
15.1 What Is Inheri tance? 15.6 Polymorphism and Virtual
15.2 Protected Members and Cl ass Member Functions

Access 15.7 Abstract Base Classes and Pure

15.3 Constructors and Destructors in Virtual Functions

Base and Derived Classes 15.8 Mult iple Inheritance

15.4 Redefining Base Class Functions
15.5 Class Hierarchies

What Is Inheritance?

CONCEPT: Inheritance allows a new class to be based on an existing class. T he new
class inherits a U th e member variables and fun ct ions (except t he
const ru ctors and destructor) of the class it is based on.

Generalization and Specialization
In rhe rea! world you can find many objects that are specialized versions of other more
general objects. For example, the term "insect" describes a very general type of creature
with numerous characteristics. Because grasshoppers and bumblebees are insects, they
have all the general characteristics of an insect. In addition, (hey have special characteris
tics of their own. For exa mple, the grasshopper has its jumping a bility, and the bumblebee
has its stinger. Grasshoppers and bumblebees are specia lized versions of an insect. Th is is
illustrated in Figure 15·1.

895

896 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Figure 15-1

In addition to the common
insect characteristics, the

bumble bee has its own unique
characteristics such as the

ability to sling.

All insects have
certain characteristics.

In addtion to the common
insect characteristics, the

grasshopper has its own unique
characteristics such as the

ability 10 jump.

Inheritance and the uls aU Relationship

When one object is a specialized version of another object, there is an "is a" relationship
between them. For example, a grasshopper is an msect. Here are a few other examples of
the " is a" relationship.

• A poodle is a dog.
• A car is a vebicle.
• A tree is a plant.
• A rectangle is a shape.
• A football player is an athlete.

When an "is a" relations hip exists between classes, it means that the specialized class has
all of the characteristics of the general class, plus additional characteristics that make it
special. 111 object-oriented programming, inheritance is used to create all "is a" relation
ship between classes.

Inheritance involves a base class and a derived class . T he base class is rhe general class and
the derived class is the specialized class. The derived class is based on, or derived from, the
base class. You ca n think of the base class as the parent and the derived class as the child.
This is illustrated in Figure 15-2.

Figure 15-2

Insect class
Base Class

members (Parent)

Grasshopper class
Derived Class

members (Child)

15.1 What Is Inheritance?

T he derived class inherits the member variables and member functions of the base class
without any of them being rewritten. Furthe rmore. new member variables and functions
may be added to the derived class to make it more specialized than the base class.

Lee's look at an example of how inheritance can be used . Most teachers assign variolls
graded activities for their studenrs to complete. A graded activity can receive a numeric
score such as 70, 85, 90, and so on, and a letter grade such as A, B, C, D, Or F. The follow
ing GradedActivity class is designed ro hold the numeric score and letter grade of a
graded activity. When a numeric sco re is stored by the class, it automatically determines
the letter grade. (These files are stored in the Student Source Code Folder Chapter 15\

GradedActivity version 1.)

Contents of GradedActivity . h (Version 1)
1 lifndef GRADEDACTIVITY H
2 'define GRADEDACTIV!TY H
3
4 II GradedActivity class declaration
5

6
7
8
9

class Gr adedActivity
{

private :
double scoce ; II To hold the

10 public:
11 II Default constructor
12 GradedActivity()
13 { score'" 0 . 0; }
14
15 /1 Constructor
16 GradedActivity(double s)
17 {score=s;}
18
19 1/ Mutator function
20 void setScore(double s)
21 { score - Si }
22

23 II Accessor functions
24 double getScore() const
25 { return score; }
26
27 char getLetterGrade(} canst;
28 } i
29 'endif

numecic scoce

Contents of GradedActi vity . cpp (Version 1)

1 linclude "GradedActivity . h "
2
3 /1*************************************** ************* * *
4 // Member function GradedActivity :: getLetterGrade •

6

897

898 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

7 char GradedActivity : : getLetterGrade() canst
8 {

9 char letterGrade; II To hold the letter grade
10
11

12
13
14
15
16
17
18
19
20
21

if (score > 89)

letterGrade = 'A' i

else if (score > 79)
letterGrade = '8' ;

else if (score > 69)
letterGrade 'c' ;

else if (score > 59)

letterGrade 'D' ;
else

letterGrade = 'F';

22 return letterGrade;
23 }

The GradedActivity class has a default constructor that initializes the score member
var iable to 0.0. A second conStructor accepts an argument for score. The setScore mem
ber function also accepts an argument for the score variable, and the getLetterGrade
member fu nction returns the letter grade that corresponds to the value in score.
Program 15-1 demonstrates the GradedActivity class. (This file is also stored in the Stu
dent Source Code Folder Chapter 15 \GradedActivity Version 1.)

Program 15-1

1 II This proqram demons t rates the GradedActivity class.
2 'include <iostream>
3 'include "GradedActivity . h"
4 using namespace std;
5

6 int main()
7 {

8 double testScore; II To hold a test score
9

10 II Create a GradedActivity object for the test_
11 GradedActivity test;
12
13 II Get a numeric test score from the user.
14 cout « "Enter your numeric test score : " ;
15 cin » testScorei
16
17 II Store the numeric score in the test object _
18 test . setScore(testScore);
19
20 II Display the letter grade for the test .
21 cout « "The grade for tha t test is "
22 « test . getLetterGrade() « endl;
23
24 return 0;
25 }

Program Output with Example Input Shown In Bold
Enter your numeric test score : 89 [Enter]
The grade for that test is B

Program Output with Different Example Input Shown In Bold
Enter your numeric test score: 75 [Enter]
The grade for that test is C

15.1 What Is Inheritance?

The GradedActivi ty class represents the general characteristics of a student's graded activ
ity. Many different types of graded activities exist, however, such as quizzes, midterm exams,
final exams, lab reports, essays, and so on. Because the numeric scores might be determined
differently for each of these graded activities, we can create derived classes to handle each
one. For example, the following code shows the FinalExam class, which is derived from the
GradedActivity class. It has member variables for the number of questions on the exa m
(numQuestions), the number of points each question is worrh (pointsEach), and the num
ber of questions missed by the srudem (numMissed). These files are also stored in the Stu
dent Source Code Folder Chapter lS\GradedActivity Version 1.

Contents of F inalEx am . h

1 #ifndef FINALEXAM H
2 'define FINALEXAM H
3 hnclude "GradedActivity.h" ,
5 class FinalExam : public GradedActivity
6 {
7

•
9

private :
int numQuestions;
double pointsEach;
int numMissed;

public:

// Number
// Points
1/ Number 10

11
12 II Defau lt constructor
13 FinalExam()
14 { numQuestions = 0;
15 pointsEach ~ 0 . 0;
16 numMissed = 0 ; }
17

18 II Constructor

of questions
for each question
of questions missed

19 FinalExam{int questions, int missed)
20 (set (questions , missed); }
21
22 II Mutator function
23 void set(int, int I; 1/ Defined in FinalExam,cpp
24

25 II Accessor functions
26 double getNumQuestions() const
27 { return numQuestions; }
2.
29 double getPointsEach() const
30 { return pointsEachj }
31

899

900 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

32 iot getNUmMissed() const
33 { return numMissed; }
34 };
35 'eodif

Contents of FinalExam . cpp
1 *include" rinalExam. h"
2

3 11-···_····_···*·············_*_······ ·_··_*·_-**-_··* **-*
4 II set function *
5 /1 The parameters are the number of questions and the *

/1 number of questi.ons missed . • •
7 //*** ** ******* ••• ***** •••••• ******* ••• **************** **k_

8
9 void FinalExam:: set(int questions, iot missed)

10 {
11 double numericScore; 1/ To hold the numeric score
12
13 /1 Set the number of questions and number missed.
14 numQuestions = questions;
15 numMissed = missed; ,.
17 II Calculate the points for each question.
18 pointsEach = 100 . 0 I numQuestions i
19
20 II Calculate the numeric score for this exam .
21 numeriCScore = 100.0 - (missed * pointsEach);
22
2] II Call the i n herited setScore function to eet
24

25
26)

II the numeric score.
setScore(numericScore);

The only new notation in this code is in line 5 of the FinalExam.h file, which reads

class FinalExam : public GradedActivity

This line indicates rhe name of the class being decla red and the na me of the base class it is
derived from. Finall'':xam is the name of the class being declared and GradedActivity is
the name of the base class it inherits from.

class Fi na l Exam

t
Class being declared
(t he derived class)

public

Base class

IE we want to express the relationship between t he twO classes, we can say tha t a
PinalExam is a GradedActivity.

The word public, which precedes the name of the base class in Ime 5 of the FinalExam . h
file , is the base class access specification . It affects how the members of the base class arc
inherited by the derived class. When you create an object of a derived class, you can think

15.1 What Is Inheritance?

of it as being built on top of an object of the base class . The members of the base class
object become members of the derived class object. How the base class members appear in
the derived class is determined by the base class access specification.

Although we will discuss this topic in more derail in (he next sect ion, let's see how it

works in this example. T he GradedActivity class has both private members and public
members. The FinalExam class is derived from the GradedActivi ty class, using public
access specifica tion. This means that the publ ic members of the GradedActivity class
will become public members of the Fi nalExam class. The private members of the
GradedActivity class cannot be accessed directly by code in the FinalExam class.
Although the private members of the GradedActivity class are inhc l·ited, it's as though
they arc invisible CO the code in the FinalExam class. They can only be accessed by the
member func tions o f the GradedActivity class. Here is a list of the members of the
FinalExam class:

Private Members:

int numQuestions
double pointsEach
int numMissed

Public Members:

FinalExam()
FinalExam(int , intI
set(int, int)
getNumQuestions()
getPoint6Each()
getNumMissed()
setScore(double)
getscore()
getLetterGrade ()

Declared in rhe FinalExam class
Declared in the FinalExam class
Declared in the FinalExam class

Defined in the FinalExam class
Defined in the FinalExam class
Defined in the FinalExam class
Defined in the F i nalExam class
Defined in the FinalExam class
Defined in the FinalExam class
Inherited from GradedActivity
Inherited from Gr adedActivity
Inherited from Gr adedActivity

The GradedActivity class has one private member, the variable score. Notice thar it is
not listed as a member of the FinalExam class . It is still inherited by the derived class, but
because it is a private membe r of the base class, only member functions of the base class
may access it. It is truly private to the base class. Because the func tions setScore,
getScore, and getLet terGrade are public members of the base class, (hey also become
public members of rhe denved class.

You will also notice that the GradedActivity class constructors are not listed among the
members of the FinalExam class . Although the base class constructors still exist, it makes
se nse that they are not members of the derived class because the ir purpose is to construct
objects of the base class. In the next section we discuss in more detail how base class con
StrUCtors operate.

Let's take a closer look at the fi nalExam class constructors. The defau lt constructor
appears in lines 13 through 16 of the FinalExam. h file. It simply assigns 0 to each of the
class's member variables_ Another conStructor appears in lines 19 through 20. Th is con
structor accepts two arguments, one fo r the number of questions on the exam, and one for
the number of questions missed. This constructo r merely passes those va lues as argumems
to the set function.

901

90 2 Chapter 15 Inheritance. Polymorphism, and Virtual Functions

The set function is defined in FinalExam . cpp. It accepts two arguments: the number of
questions on the exam, and the number of questions missed by the student. In lines 14 and
15 these values are assigned to the numQuestions and numHissed member variables. 1n
line 18 the number of points for each question is calculated. In line 21 the numeric test
score is calculated. In line 25, the last statement in the funct ion reads:

setScore(numericScore);

This is a call to rhe setScore function. Al though no setScore funct ion appears In the
FinalExam class, it is inherited from the GradedActivity class. Program 15-2 demon
strates the FinalExam class.

Program 15-2

1 II This program demonstrates a base class and a derived class.
2 t i nc l ude <iostream>
3 tinclude <iomanip>
4 tinclude "FinalExam . h"
5 using namespace std;
6
7 int main{)
B (

II Number of questions on the exam 9

10

11

int questions;
i nt missedj II Number of questions missed by the student

12 /1 Get the number of questions on the final exam .
13 cout « "How many questions are on the final exam? ";
14 cin » que stions;
15
16 II Get the number of questions the student missed.
17 cout « "How many questions did the student miss? " ;
18 cin » missed;
19
20 1/ Define a FinalExam object and initialize it with
21 1/ the values entered.
22 FinalExam test(guestions, missed) ;
23
24 II Display the test results .

cout « setprecision (2); 25
2.
27

26
29
30

cout « "\nEach question counts " « test.getPointsEach()
« " points . \n";

cout « "The exam score i s « test.getScore() « endl ;
cout « "The exam grade 15 " « test.getLetterGrade() «

31 return 0;
32 }

Program Output with Example Input Shown In Bold
HOw many ques t ions are on the final exam? 20 [Enter]
How many que stions did the student miss? 3 (Enter]

Each question counts 5 points.
The e xam score is B5
The exam grade is B

end1;

15.1 What Is Inheritance?

Notice in Jines 28 and 29 that (he public member func tions of the GradedActivity class
may be directly called by the test object:

cout « "The exam score is " « test . getScore() « endl;
cout « "The exam grade is " « test.getLetterGrade() « endl ;

The getScore and getLetterGrade member functions are inherited as public members
of the FinalExam class, so they may be accessed like any other public member.

Inheritance does nOt work in reverse. It is n Ot possible fol' a base class to ca ll a member
function of a derived class. For exa mple, the following classes will not compile !n a pro
gram beca use the BadBase constructor attempts to ca ll a function in its derived class:

class BadBase
{

private :
int Xi

public :
BadBaSe() { x - getVal(); }

) ,

class Derived
{

private :
int y;

public:

public BadBase

Derived(int z) { y = z ;)
int getVa l () { return y ; }

} ;

~ Checkpoint

II Error !

15.1 Here is the fi rst line of a class declarat ion. Circle the name of the base class:
class Truck : public vehicle

15.2 Circle the name of the derived class in rhe following declara tion line:
class Truck : public Vehicle

15.3 Suppose a program has the following class declarations:

class Shape
{

private:
double area;

public ~
void setArea(double a)

{ area = a; }

double getArea()
{ return area; }

} ;

class Circle
{
private :

public Shape

double radius ;

903

904 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

public:

) ;

void setRadius{double r)
{ radius = r;

setArea(3 . 14 * r * r) ; }

double getRadius()
{ return radius; }

Answer the following questions concern ing these classes:

A) When an object of (he Circle class is created, what are its private members?

B) When an object of the Circle class is created , what are its public members?

C} What members of the shape class are nor accessible to member functions of the
Circle class?

Protected Members and Class Access

co NC EPT: Protected members o f a base class a re like private members, but th ey may
be accessed by derived classes . The base class access specification
determines how private, public, aod protected base class members are
accessed when they are inherited by the derived classes .

Until now you have used twO access spec ifications within a class: private and public.

C++ provides a third access specification, protected. Protected members of a base class
are like private members, except they may be accessed by funct ions in a derived class. To
the rest of the program, however, protected members are inaccess ible .

The following code shows a modified version of the GradedActivity class declaration.
T he private member of the class has been made protecTed. This file is stored in the Student
Source Code Folder Chapter 1S\GradedActivity version 2. The implementation file,
GradedActivity . cpp has not changed, so it is not shown again in this example.

Contents of GradedActivity . h (Version 2)
1 jifndef GRADEDACTIVITY H
2 .define GRADEDACTIVITY H
3
4 II GradedActivity class declaration
5
6 class GradedActivity
7 {
8 protected:
9 double score; II To hold the numeric score

10 public:
11 II Default constructor
l? GradedActivity()
13 { score '" 0.0; }
14
15 1/ Constructor
16 GradedAct ivity(double s)
17 { score = s j } ,.

15.2 Protected Members and Class Access

19 II Mutator function
20 void setScore(double s)
21 { score '" s; }
22
23 II Accessor functions
24 double getScore() const
25 { return score; }
2.
27 ch3r getLetterGrade(} const;
28 } ;

29 'endif

Now we wilJ look at a modified version of the F inalExam class, which is derived from tllis
version of the GradedActivity class. This version of the FinalExam class has a new mem
ber function named adjustScore. This func tion directly accesses the GradedActivity
class's score member variable. If the coneent of the score variable has a fractional part of
O.S or greater, the function rounds score up to the next whole number. The set function
calls rhe adjustScore function after it calculates the numeric score. (These files arc stol'ed
in the Student Source Code Folder Chapter 15 \Gr adedActivi ty Version 2.)

Contents of FinalExam. h (Version 2)
1 'ifndef fINALEXAM H
2 'define FINALEXAM H
3 hnclude "GradedActivity.h·· ,
5 class Fina1Exam : public GradedActivity . (
7 private:
8 lnt numQuestions; II Number of questions
9 double pointsEach;

10 lnt numMissed ;
II Points for each question
II Number of questions missed

l1 public :
12 II Default constructor
13 FlnalBxam()
14 { numQuestions = 0;
15 pointsEach = 0 . 0;
16 numMissed = 0; }
17
18 II Constructor
19 FinalExam(int questions, int missed)
20 { set (questions, missed); }
21
22
23

" 25

II Mutator functions
void set(int, intI;
void adjustScore();

I I Defined in
II Defined in

26 II Accessor functions
27 double getNumQuestions() const
28

2'
{ return numQuestions ; }

30 double getPointsEach() const
31 { return pointsEach, }
32

finalExam. cpp
FinalExam.cpp

905

906 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

33 int getNUmMi ssed() canst
34 { return numMissedi }

35 } ;
36 jendif

Conte nts of FinalExam . cpp (Ve rsion 2)

1 *include "FlnalExam.h"
2
3
4

5
6

7
8

11*···*·**-_··_---------------*-------_·_-------------**** /1 set function *
II The parameters are the number of questions and the *
II number of questions mi ssed . *

11------------_·_--*---_·_····_-------_····_----------****
9 void FinaIExam: : set(int questions, int missed)

10 {
11 double numericScorei II To hold the numeric score
12
13 /1 Set the number of questions and number missed.
14 numQuest i ons = questions:
15 numMissed = missed ;

" 17 1/ Calculate the points for each question .
18 pointsEach = 100.0 I nurnQuestions;

" 20 II Calculate the numeric score for th i s exam.
21 numericS core = 100.0 - (missed * po i ntsEach);
22
23 II Call the inherited setScore function to set
24 II the numeric score.
25 setScore(numericScore)i
2,
27 II Call the adjustScore function to adjust
28 II the score .
29 adjustScore();
30)
31
32 11** **********
33 II Definition of Test : :adjustScore . If score is within *
34 II 0 . 5 points of the next whole point, it r ounds the score up *
35 I I and recalculates the letter grade. *
36 11** ** ********

37
38 void FinaIExam : :ad j ustScore()
39 {

40 double fraction - score - static_cast<int>(score);
41
42 if (fraction >~ 0.5)
43 {
44 II Adjust the score variable in the GradedActivity class .
45 score +~ (1.0 - fraction);
46)
47)

, 5.2 Protected Members and Class Access

Program]5-3 demonstrares these versions of rhe GradedActivity and FinalExam
classes. (This file is also sto red in the Student Source Code Folder Chapter 15 \

GradedActivity Version 2.)

Program 15-3

1 // This program demonstrates a base class with a
2 // protected member .
3 ' i nclude <iostream>
4 'include <iomanip>
5 tinclude "FinalExam . h"
6 using names pace std;
7
8 int main ()
9

10 int questions; /1 Number of questions on the exam
11 int missed; // Number of questions missed by the student
12
13 1/ Get the number of questions on the final exam.
14 cout « "How many questions are on the fina l exam? ":
15 cin » questions;

" 17 II Get the number of questions the student missed .
18 cout « "How many questions did the student miss? ";
19 cin » missed;
20
21 II Define a FinalExam object a nd initialize it with
22 II the values entered.
23 FinalExam test(questions, missed):
24

25 // Display the adjusted test result s .

2'
27
28

29
30
31

32
33

cout
cout

cout

cout

«
«
«
«
«
«
«

setprecision(2) « fixed;
"\nEach question counts "

test.getpointsEach() « "
"The adjusted exam score
test. getScore () « endl;
"The exam grade is "
test.getLetterGrade() «

34 return 0;
35)

points. \ n";
is "

endl;

Program Output with Example Input Shown In Bold
How many questions are on the final exam? 16 [Enter]
How many questions did the student miss? 5 [Enter]

Each question counts 6 . 25 points .
The adjusted exam score is 69.00
The e xam grade is 0

The program works as planned. In the example run) the student missed five questions,

which are worth 6.25 points each. The unadjusted score would be 68.75. The score was
adjusted to 69.

907

908 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

More About Base Class Access Specification
The first line of the FinalExam class declaration reads:

class FinalExam ; public GradedActivity

This declaration gives public access specification to the base class. Recall from Ollr earlier
discussion char base class access specification affects how inhe rited base class members are
accessed . Be careful nOt to confuse base class access specification with member access
speci fica tion. Member access specification determines how members that are defined
within the class are accessed. Base class access speci fication determines how inherited
members are accessed.

When you create an object o f a derived class, it loherits the members of the base d ass. The
derived class can have its own private, protected, and public members, bur what is the
access specification of the inherjred members? T his is dete rmined by the base class access
specification. Table 15-1 summarizes how base class access specifica tion affects the way
that base class members are inherited.

Table 15~1

Base Class Access
Specification How Members of the Base Class Appear 10 the Derived Class

private Private members of the base class are inaccessible to the derived class .

Protected members of the base class become private members of the
derived class.

Public members of the base cll'lsS become private members of the deriveJ class.
protected Private membe rs of me base class a re jna~cessible to the derived class.

public

Protected members of the base class become protected members of the
derived class.

Public members of the base class become protected members of the derived
class .

Private members of the base class are inaccessible to the derived class.

Protected mem bers of the base class become protected members of the
derived class.

Public members of the base class become public members of the denved class .

As you can see from Table 1 5 ~ 1, class access specifica tion gives you a great dea l of flexibil
ity in determining how base class members will appear in the derived class . Think of a
base class's access specifica tion as a filter that base class members must pass through when
becoming inheri ted members of a derived class. Th is is illustrated In Figure 15-3.

NOTE: If the base class access specification is left Out of a declaration, the default access
specification is private. For example, in the following declaration, Grade is declared as
a private base class:

class Test : Grade

Figure 15-3

Base class members

private: x
protected: y
public: z

private: x
protected : y
public : z

private : x
protected: y
public: z

, 5.2 Protected Member.s and Class Access

How base class
members appear

in the derived class

private
base class x is inaccessible.

- - -------.. , private: y
private: "Z

protected
base class x is inaccessible.

- --------.... protected : y
protected : z

public
base class

~ Checkpoint
15.4 What is the difference between private members and protected members?

15.5 What is the difference between member access specification and class access
specification?

15.6 Suppose a program has the following class declaration:

II Declaration of CheckPoint class.
class CheckPoint
{

I ,

private:
int ai

protected:
int bi
int c;
void setA(int

public:
void setB(int
void setC(int

xl { a = x; }

yl { b Y i }
, I { c = z; }

Answer the following questions regarding the class:

A) Suppose another class, QUiz, is derived from the CheckPoint class. H ere is the
first line of its declaration:

class Quiz : private CheckPoint
Indica te whether each member of the CheckPoint class is private,
protected, public, or inaccessible:

a
b
c
setA
setS
sete

909

910 Chapter 15 inheritance, Polymorphism, and Virtual Functions

B) Suppose the Quiz class, derived from the CheckPo i nt class, is declared as
class Quiz : protected Checkpoint

Indicate whether each member of the CheckPoint class is private,
protected, public, or inaccessib le:

a
b
c
setA
setB
setC

C) Suppose the Quiz class, derived from the CheckPoint class, is declared as
class Quiz : public Che ckpoint

Indicate whether each member of the CheckPoint class is private,
protected, public, or inaccess ible:

a
b
c
setA
setS
setC

D) Suppose the Quiz class, derived from the CheckPoint class, is declared as
class Quiz : Checkpoint

Is the CheckPoint class a private, public, or protected base class?

Constructors and Destructors in Base
and Derived Classes

CONCEPT: The base class's constructOr is call ed before the deri ved class's
constructor. The destru ctors are ca lled in reverse order, with the deri ved
class's destructor being call ed first.

In inheritance, the base class constructOr is called before the derived class constructor.
Destructors are called in reverse order. Program 15-4 shows a simple set of demonstration
classes, each with a default constructor and a destructor. T he DerivedClass class is
derived from the BaseClass class. Messages are displayed by the constructOrs and
destructo rs to demonstrate when each is called.

Program 15-4

1 II Th i s program demonst r ates the order in which base and
2 /1 derived class constructors and destructors are called .
3 ¥include <iost r eam>
4 usi ng namespace std;
5
6
7

B
9

11 ** ** *********** *** **** *********·
II BaseClass declaration •
11*·· · ·· · ····*·*·**····****···****

15.3 Constructors and Destructors in Base and Derived Classes

10 class BaseClass
11

12 public :
BaseClass () II Constructor 13

14 { cout « "This is the BaseClass constructor.\n"; }
15
16 -BaseClass() /1 Destr uctor
17 { cout« "This is the BaseClass destructor.\n"; }
18 } ;
19
20 //****** ***** *** ******** ********* *
21 // DerivedClass declaration *
22 //**** ********************* *******
23
24 cla ss DerivedClass : public BaseClass
25 {
26 pUblic :
27 DerivedClass() // constructor
28 { cout « "This is the DerivedClass constructor . \ n " ; }
29
30 -DerivedClass{) // Destructor
31 { cout« "This is the Deri vedClass destructor.\n";)
32 } ;
33
34

/1 mai n function • 35
36
37
38
39
40
41

42

// ****** ** ****** ******************

43

int main()
{

cout « "We will now define a DerivedClass object . \n" ;

DerivedClass object ;

44 cout « "The program is now going to end . \n ";
45 return 0 ;
46)

Program Output
We will now define a OerivedClass object .
This is the BaseClass constructor.
This is the DerivedClass constructor.
The program is now going to end.
This is the DerivedClass destructor .
This is the BaseClass destructor.

Passing Arguments to Base Class Constructors
In Program 15-4, both the base dass and derived class have default constructors, that are
called automatically. But what if the base class's conStructor takes argu ments? What if
there is more than one constructor in the base class? The answer to these questions is to let
{he derived class constructor pass arguments ro the base class constructor. For example,
consider rhe followi ng class:

911

912 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Contents of Rectangle. h

1 'ifndef RECTANGLE H
2 'def i ne RECTANGLE tl

3

4 class Rectangle
5 {
6 private :
7 doubl e width;
8 double length;
9 public:

10 /1 Default constructor
11 Rectangle()
12 { width - 0 . 0;
13 length: 0 . 0; }
14
15 /1 Constructor ' 2
16 Rec t angle(double w, double len)
17 { width: Wi

18 length = len; }
19
20 double getWidth() canst
21 { return width; }
22
2 3 double g€tLeng t h () comIc

24 { return length ; }
25
26 double getArea() canst
27 { return width * length: }
28 } i
29 lend i f

This class is designed to hold da ta about a rt:l.:tangie. It specifics twO constructors. The
default constructor, in lines 11 through 13, simply initializes the width and l ength mem
ber variables to 0.0. The second constructor, in lines 16 through 18, takes twO arguments,

which arc assigned to the width and length member variables. Now let's look at a cl ass

that is der ived from the Rectangle class:

Contents of Cube. h

1 l ifndef CUBE H
2 'define CUBE_ H
3 !include "Rectangle.h"
4

5 class Cube : public Rectangle
6 {
7 protected :
8 doubl e height;
9 double volume;

10 public :
11 II Default constructor
12 Cube() : Rectangle()
13
14

{ height ~ O.Oi volume = 0 . 0 ; }

15.3 Constructors and Destructors in Base and Derived Classes

15 II Constructor #2 I.
17
18

19

Cube (double
(height

volume

w, double len, double h)
h;

= getArea() * hi }

20 double getHeight() const
21 { return height; }
22
23 double getVolume() const
24 { return volume; }
25 } ;
26 'endif

Rectangle(w, len)

The Cube class is designed to hold data about cubes, which not only have a length and
width, but a height and volume as well. Look at line 12, which is the first line of the Cube
class's default constructor:

Cube{) : Rectangle{)

Notice the added notatio n in the header of the constructor. A colon is placed after the
derived class constructor's parentheses, followed by a function call to a base class con
structor. In this case, the base class's default constructOr is being called. When this Cube
class constructOr executes, it will first call the Rectangle class's defaul t constructOr. This
is illustrated here:

Cube()

I
Derived Class
Constructor

Rectangle()

\
Call to the Base

Class Constructor

The general format of this type of constructor declaration is

ClassName::ClasSName(ParameterList) : BaseClasSNarne(ArgumentList}

You can also pass arguments to the base class conStruCtOr, as shown in the Cube class's
second constructor. Look at line 16:

Cube{double w, double len , double h) : Rectangle(w, len)

This Cube class constructor has three parameters: IN, len, and h. Notice thac che Rectangle
class's constructor is called, and the wand len parameters arc passed as arguments. This
causes the Rectangle class's second constructor to be called.

You only write this notation in the definit ion of a constructor, not in a prototype. In this
example, the derived class constructOr is written in line (inside the class declaration), so the
notation [hat coma ins the call to the base class conStructOr appears there. If the construc
tor were defined outside the class, the notation would appear in the function header. For
example, the Cube class could appear as follows.

913

914 Chapter 15 Inheritance, Polymorphism, and Vir tual Functions

class Cube
{

public Rectangle

protected:
double height;
double volume;

public:

) ;

/1 Default constructor
Cube() : Rectangle()

{ height ~ 0 . 0; volume - 0 . 0 ; }

II Const r uct or 12
Cube{double , double, double);

double getHeight() const
{ return height; }

double getVolume() const
{ return volume; }

/1 Cube class constructor 12
Cube : :Cube(double w, double len, double h)
{

height
volume

h;
getArea() ." h;

Rectang l e(w, len)

T he base class constructor is always executed before the derived class constructor. When
the Rectangle COnStrUCtor finishes~ the Cube constructor is rhen executed.

Any !lleral value or variable that is in scope may be used as an argument to the derived
class constructor. Usually, one or more of the arguments passed to the derived class con
structor are, in turn, passed to the base class constructor. The values that may be used as
base class constructor arguments are

• Derived cia!';!'; conStructor paramerers
• Literal values
• Global variables that are accessible to the file containing the derived class con

structor definition
• Expressions involving any of these items

Program 15-5 shows the Rectan91e and Cube classes in use.

Program 15-5

1 II This pro9ram demonstrates passing arguments to a base
2 II class constructor.
3 'include <iostream>
4 linclude "Cube.h "
5 using names pace std ;
6

7 int main()
8 {
9

10
11

12

double cubeWi dth;
double cubeLength;
double cubeHeight;

15.3 Constructors and Destructors in Base and Derived Classes

II To hold the cube's wi dth
II To hol d the cube's length
II To hol d the cube's height

13 II Get the width , length, and height of
14 II the cube from the user.
15 cout « "Enter the dimensions of a cube:\n";
16 cout « "Width: ";
17 cin » cubeWidth;
18 cout « "Length: ";
19 cin » cubeLength;
20 cout « "Height: ";
21 cin » cubeHeight;
22
23 II Define a Cube object a nd use the dimensions
24 II entered by the user.
25 Cube myCube(cubeWidth, cubeLength, cubeHeight);
26
27 II Display the Cube object's properties .
28 cout « "Here are the cube's properties:\n";
29 cout « "width: " « myCube . getWidth() « endl;
30 cout « "Length : " « myCube . getLength() « endl;
31 cout « "Height: " « mycube.getHeight() « endl;
32 cout « "Base area: " « myCube . getArea() « endl;
33 cout « "Volume: " « myCube.getVolume() « endl;

3'
35 return 0;
3 6 }

Program Output with Example Input Shown In Bold
Enter the dimensions of a cube:
width: 10 [Enter]
Length: 15 [Enter]
Height: 12 [Enter]
Here are the cube's properties:
width: 10
Length: 15
Height: 12
Base area: 150
Volume: 1800

()
NOTE: If the base class has no default conStructOr, then the derived class must have a

"-_c_o_n_'_t_,,_,_c_to_, __ t h __ a_r _c_a_II_, _o_n __ , _o_f_t_h_' __ b_a_s_,_c_l_"_,, __ c_o_n_'_r_ru_c_t_o_'_s_. ______________________________ -"

9lS

916 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

~ Checkpoint
15 .7 What will the following program displa y?

'include <iostream>
using namespace std;

class Sky
{
pUb l ic:

} ;

Sky()
{ cout« "Entering the sky.\n"; }

-Sky()
{ cout « "Leaving the sky.\n"; }

class Ground
{

public Sky

public:

} ;

int
{

}

Ground()
{ cout « "Entering the Ground. \0"; }

- Grounrl()
{ cout « "Leaving the Ground. \n" ; }

main()

Ground object;
return O· ,

15.8 What will the following program displa y?

'include <iostream>
using namespace std;

class Sky
{
public :

} ;

Sky()
{ cout « "Enter i ng the sky . \n" ; }

Sky(char *color)
{ cout « "The sky is " « color « endl; }

-Sky()
{ cout « "Leaving the sky . \n" ; }

class Gr ound public Sky

public :

} ;

Grounrl()
{ cout« "Entering the Ground . \n"; }

Ground(char *cl, char *c2) : Sky{cl)
{ cout « ""The ground i s "" « c2 « endl;

-Ground ()
{ cout« "Leav i ng the Ground . \n"; }

RedcfUlilLg a
Hase Clas~

FunClion in a
Dn ivtd Class

int main()
{

Ground
return

object i
O· ,

15.4 Redefining Base Class Func.tions

Redefining Base Class Functions

CONCEPT; A b~se class member function may be redefined in <l derived class .

lnheritance is commonly used to extend a cbss or give it aJJil iunal capabilities . Some·
ti mes it m~y be helpful to overload a base class function with a function of tht sa lilt Ilame

in the derived class. For example, recall the GradedActi vity class tha r w~s presented ear·
lier in this chapter:

class GradedAct i vity
(

protected:
char letter:
double score;
void det ermineGradc()i

pUblic :
II Default constructor
GradedActivity()

II To hold the letter gr ade
II To hold the numeric score
II Determi nes the letter grade

{ letter = . ' : score = 0 . 0 ; }

II Mutator f unction
void setScore(double 5)

{ score '" s ;
determineGrade():}

II Accessor functions
double getScore() const

{ return score ;)

char getLetterGrade() const
{ return letter; }

This class holds a nume ric score and determines a letter grade based on tha t score. The
setScore member function StOres a va lue in score, then calls the determineGrade mem
ber function to determine the letter grade.

Suppose a teacher wants to "curve" a numeric score before the lener grade is determined.
For example, Dr. Harr ison derermines thar in order to curve the grades in her class she
must multiply each student's score by a cen ain percentage. This gives an adjusted score,
which is used ro dete rmine the letter grade.

T he following curvedActivHy class is de rived from the GradedActivity class. it mul·
tip lies the numeric score by a pen.:entage, and passes [hat value as an argu ment to the
base class's s e tScore funcrion. (Th is file is stored in the Stud em SOlJ(ce Code Folder
Chapter lS\CurvedActivity.)

917

918 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

()

Contents of CurvedActivity. h

1 #ifnde f CURVEDACTIVITY_H
2 #define CURVEDACTIVITY_H
3 #include "GradedActivity . h"
4
5 class CurvedActivity : public GradedActivity

6 (
7 prot~cted :

8 double rawScore; II Una d justed score
II Curve percentage 9 double percentage;

10 pUblic :
11 1/ Default constructor
12 CurvedActivity{): GradedActivity()
13 { rawS core '" 0.0; percentage'" 0.0; }
14
15 /1 Mutator functions
16 void setScore(double s)
l7 ,.
19

{ rawS core '" s ;
GradedActivity : :setScore(rawScore * percentage); }

20 void setPercentage(double C)
21 { percentage '" c; }
22
23 II Accessor functions
24 double getPercentage() canst
2S { return percentage; } 2.
27 double getRawScore(l canst

2S { return rawScore; }
29 } ;
30 #endif

This CurvedActivity class has the following member variables;

• rawScore
• percentage

This variable holds the swdem's unadjusted score.
This variable holds the value that the unadjusted score
must be multipli ed by to get the curved score.

It also has the following member functions:

• A default constructor that calls the GradedActi vity default constructor. then
sets rawScore and percentage to 0.0.

• setScore T his funct ion accepts an argument that is the student's
unadjusted score . The func tion stores the argument in the
rawScore variable, then passes rawScore * percentage
as an argument to the base class's setScore function.

•
•
•

set Percentage
get Percentage
getRawScore

This function Storts a value in the percentage variab le.

This fUllction returns the value in the percentage va riable.

This function rerurns the value in the rawScore variable.

NOTE: Although we are not using the CurvedActivity class as a base class, it still has
a protected member section. This is because we might want to use the CurvedActivity
class itself as a base class, a.<; yOll will see in the next section.

15.4 Redefining Base Class Functions

Notice that the curvedActivity class has a setScore member fu nction. This function
has the same name as one of (he base class member functions. When a derived class's
member function has the same name as a base class member function, it is said that the
derived class function redefines the base class function. When an objecr of the derived
class calls the function, it calls the derived class's version of the function.

There is a distinction between redefining a function and overloading a function. An over
loaded function is one with the same name as one or more other functions, but with a dif
fe rent parameter list. T he com piler uses the arguments passed [Q rhe function to tell which
version to call. Overloading can rake place WIth regular functions rhat are not members of
a class. Overloading can also take place inside a class when two or more member func
tio ns of the same class have the same name. T hese member functions must have differen t
parameter lists for the comp iler to tell them apart in fu nction calls .

Redefining ha ppens when a denved class has a function with the same name as a base
class function. T he parameter lists of the two fu nctions can be the same because the
derived class function is always called by objects of the derived class ty pe.

Let's continue our look a t the cllrvedActivity class. Here is the setScore member
funct ion:

void setScOre(dOllble s)
{ rawScore = Si

GradedActivity : :setScore(rawScore * percentage) ; }

This function accepts an argument that should be the student's unadj usted numeric score,
into the pa rameter s. This value is stored in the rawScore variable. T hen the following
statement is exec uted:

GradedActivity :: setScor e(r awScore * percentage) ;

This statement calls the base class's version of the setS core func tion with the expression

rawS core * percentage passed as an argumem. Notice that the name of the base class
and the scope resolution operator precede the name of the funC Tion. Th is specifies that the
base class's ve rsion of rhe setScore fu nction is being cal led. A derived class function may
call a base class function of [he same name lLsing this notation, which takes this form :

BaseClassName: :functionName(ArgumentList);

Program 15-6 shows the GradedActivity and CurvedActivity classes used in a com
plete program. (This file is stored in the Student Source Code Folder Chapter 15\
CurvedActivity.)

Program 15-6

1
2 ,
4

5
6
7

1/ This program demonstrates a class t hat redefines
II a base class tunction .
iinclude <iostream~
jinclude <iomanip~
iinclude "Curved1\ctivit y . h"
using namespace std;

(program continues)

919

920 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Program 15-6 (continued)

8 int main()
9 {

10 double numericScore;
11 double percentage;
12

/1 To hold the numeric score
1/ To hold curve percentage

13 /1 Define a curvedActivity object.
14 CurvedAct ivity exam;
15
16 1/ Get the unadjusted score.
17 cout « "Enter the student's raw numeric score : "i

18 cin » numericScore;
I.
20 /1 Get the curve percentage.
21 cout « "Enter the curve percentage for this s tudent : ";
22 cin » percentage;
23
24 II Send the values to t he exam object.
25 exam.setPercentage(percentage);
26 exam.setScore(numericScore);
27
28 II Display the grade data.

cout « fixed « setprecision(2):
cout « "The raw score is "

2.
30
31
32
33
34
35
3.

« exam . getRawScore() « endl;
cout « "The curved score is "

« exam . getScore () « endl ;
cout « "The curved grade is "

« exam . getLetterGrade() « endl;

37 return 0;

38)

Program Output with Example Input Shown In Bold
Enter the student's raw numeric score: 87 [Enter]
Enter the curve percentage for this student: 1.06 [Enter]
The raw score i s 87.00
The curved score is 92 . 22
The curved grade is A

It is important to nOte that even though a derived class may redefine a function in the base
class, objects that are defined of the base class type still call (he base dass ve rsion of the
function. This is demonstrated in Program 15~ 7 .

Program 15-7

1 II Th is program demonstrates that when a derived class function
2 II overrides a base class function, objects of the base class
3 /1 still call the base class version of the function.
4 #include <iostream>
5 using names pace std;
6

7 class BaseClass
8 {
9 public :

10 void showMessage()
11 { cout « "This is the Base class . \n"; }
12 };
13
14 c lass DerivedClass
15 {
16 public :
17 void showMessage()

pub l ic BaseClaGG

18 cout « "This is the Derived class . \n"; }
19) ;
20
21 int main()
22
23 BaseClass b;
24 DerivedClass d;
25
26 b.showMessage();
27 d,showMessage() ;
28
29 return 0 ;
30 }

Program Output

This is the Base class,
This is the Derived class,

15.5 Class Hierarchies

In Program 15-7, a class named BaseClass is declared with a member funct ion named
showMessage. A class named DerivedClass is then declared, also with a showMessage
member funct ion. As their names imply, DerivedCICliSS is derived from BaseClass. Two
objects, band d, are defined in function main. The object b is a BaseClass object and d is
a DerivedClass object. When b is used to ca ll the showMessage function, it is the
BaseCl ass version that is executed. Likewise, when d is used to ca ll showMessage, the
DerivedClass version is used .

Class Hierarchies

CONCEPT: A base class can also be derived from another class .

Sometimes it is desirable to esrablish a hierarchy of classes in which one class inherits from
a second class, which in turn inherits from a rhird class, as illustrated by Figure 15-4. In
some cases, the inheritance of classes goes on for many layers.

In Figure 15-4, classC inherits ClassB's members, including the ones that ClassB inher
hell fru m Cld::HIA. Le ('S louk (It (Ill eXi:l llIp1c of such i:I cha in of iniH:rirallcc. Conside r the
following PassFailActivity class, which inherits from the GradedActivity class. The

921

922 cnaprer 15 Inllenrance. POlymorphIsm, and Virtual Functjons

Figure 15-4

ClassA

ClassB

'f
I

Classe

•

class is intended to derermine a lener grade of 'po foc passing) or 'F' for failing. (This file is
stored in (he Student Source Code Folder Chapter l S \ PassFailActivity.)

Contents of PassFailActivity. h

1 'ifndef PASSFAILACTIVITY H
2 'define PASSFAILACTIVITY H
3 Hnclude "GradedActivity . h"

4
5 class PassFailActivity : public GradedActivity
6 (
7

•
9

protected :
double minpassingScore ;

public :
/1 Mi n imum passing score .

10
11
12
!3

1/ Default constructor
PassFailActivity() : GradedAct i vity()

{ minPassingscore - 0 . 0; }

14 II Constructor
15 PassFailActivity(double mps) : GradedActivity()
16 { minpassingScore = mps ; }
17

18 II Mutator
19 void setMinPassingScore(double nps)
20 { minpassingScore = mps ; }
21
22 I I Accessors
23 double getMinPassingScore() const
24 { return minpassingScore ; }
25
26 char getLetterGrade() const ;
27 } ;

28 fendif

15.5 Class Hierarchies

The PassFailActivity class has a private member variable named minPassingScore.
This variable holds the minimum passing score for an activity. The default constructor, in
lines 11 through 12, sets minpassingScore to 0.0. An overloaded constructor in lines 15
through 16 accepts a double argument that is the minimum passing grade for the activ
ity. This value is stored in the minPassingScore variable. The getLetterGrade member
function is defined 10 the following PassFailActivi ty . cpp file. (This file is also stored in
the Student Source Code Folder Chapter 1S\PassFailActivity.)

Contents of PassFailActivity. cpp

1 tinclude "PassFailActivity . h"
2
3 II~~*~*~***~**~*~*******~*********************** •• **** **
4 II Member function PassFailActivity: : getLetterGrade
5 II This function returns 'P' if the score is passing,
6 /1 otherwise it returns 'F' .

•
•
•

7 /1****····*··*·*········· · ··········· •• ··.** •••••••••• ••
e
9 char passFailActivity : :getLetterGrarle() const

10 {
11 char letterGradei
12
13 if (score >- minpassingScore)
14 letterGrade = 'P';
15 else
16 letterGrade - 'F';

17

18 return letterGrade;
19 }

This getLetterGrade member func rion redefines the getLetterGrade member funcrion
of GradedActivity class. This version of the function rerurns a grade of 'P' if the
nume ric score IS greater than or equal to minPassingScore. Otherwise, the function
returns a grade of ' F' .

The passfailActivity class represents the general characteristics of a student's pass-or
fa il activity. There might be numerous types of pass-or-fail activities, however. Suppose we
need a more specia lized class, such as one that determines a student's grade for a pass-or
fail exam. The following PassFailExam class is an example. This class is derived from the
PassFailActivity class. It inherits all of the members of PassFailActivity, including
the ones that passFailActivity inhe ritS from GradedActivity. The PassFai1Exam
class calculates the number of points that each question on the exam is wo rth, as well as
the swdent's numeric score. (These files are stored in the Student SOllrce Code Folder
Chapter lS\PassFailActivHy.)

Contents of PassFailExam _h

1 'ifndef PASSFAILEXAH H
2 'define PASSFAILEXAM_H
3 #include "PassFailActivity. h"
4
5 class PassFailExam : public PassFailActivity
6 {

923

924 Chapter 15 Inheritance, PolymorpniSom, and 'v'irtua\ tunctions

7 private:
8 lot numQuestionSi II Number of questions
9 double pointsEach; II Points for each question

10 iot numMissed; /1 Number of questions missed
11 public:
12 II Default constructor
13 PassFailExam() : PasSFailActivity()
14 numQuestions = 0;
15 pointsEach = 0.0;
16 numMissed '"' 0; }

17
18 /1 Constructor
19 PassFailExam(int questions, int missed, double mps)
20 passFailActivity(mps)
21
22

{ set (questions , missed); }

23 / / Mutator function
24 void set(int , iot); II Defined in PassFailExam.cpp
25
26 1/ Accessor functions
27 double getNumQuestions() canst
28 { return numQuestionS i }
29
30 double getpointsEach() canst
31 { return pointsEach; }
32
33 iot getNumMissed() canst
34 { return numMissed; }
35) ;
36 #endif

Contents of PassFailExam. cpp

1 Hnclude "PassFailExam.h"
2

3 11** ** ****
4 II set function *
5 II The parameters are the number of questions and the *
6 II number of questions missed. *
7 11**** *** ***************************** *********** ***** ****
8

9 void PassFailExam::set(int questions, int missed)
10 {
11 double numericScore; II To hold the numeric score
12
13 II Set the number of questions and number missed .
14 numQuestions = questions;

15 numMissed = missed;
l6
l7 II Calculate the points for each question .
18 pointsEach = 100.0 I numQuestions;

19

15.5 Class Hierarchies

20 II Calculate the numeric score for this exam.
21 numer i cScore = 100.0 - (missed * pointsEach) ;
22
23 II Call the inherited setScore function to set
24 1/ the numeric score .
25 setScore(numericScOre) i
26 }

The PassFailExam class inhe rits all of the PassFailActivi ty class's me mbers, including
the ones that PassFailActivity inherited from GradedActivity. Because the public
base class access spec ification is used, all of the procecred members of passFailAct i vity
become protected members of PassFailExam, and all of the public members of
paSSFailActivity become public members of PassFailExam. Table 15·2 lists aU of
the member variables of the PassFailExam class, a nd Tab le 15-3 lists all the member
funclions. T hese include the members that were mherited from the base classes.

Table 15-2

M ember Variable of the
PassFa ilExam Class

nurnQuestions

pointsEach

numMissed

minPassingScore

score

Table 15-3

Member Functi on o f fh e
PassFailExarn Class

set

getNumQuestions

getPointsEach

getNUrnMissed

setMinFass i ngScore

getMinPassingScore

getLetterGrade

setScore

getScore

Access

protected

protected

protected

protected

protected

Access

public

public
public

public

public

public

public

public

public

Inherited ?

No
No
No
Yes, from passFailActivity

Yes, from PassFailActivity, which inherited it from

Gr adedAct i vity

Inherited ?

No
No
No
No
Yes, from PassFailActivity

Yes, from Pass~ailActivity

Yes, from PassFailActivity

Yes, from PassFailActivity,which inherited it from

GradedActivity

Yes, from PassFailAct i v i ty, which inherited it from

GradedActivity

Program 15-8 demonstrates the PassFailExam class. This file is also stored in the student
source code folder Chapt er 15\PassFailActivity.

925

926 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Program 15-8

1 II This program demonstrates the PassFailExam class.
2 'include <iostream>
3 jinclude <iomanip>
4 #include "PassFailExam.h"
5 using namespace std;
6
7 int main()
8 {
9

10
11
12

lnt questions;
lnt missed;

1/ Number of questions

double minpassing;
1/ Number of questions missed
1/ The minimum passing score

13 II Get the number of questions on the exam .
14 cout « "How many questions are on the exam? "i

15 cin » questions;
16
17 /1 Get the number of questions the student missed .
18 cout « "How many questions did the student miss? ";
19 cin » missed;

20
21 /1 Get the minimum passing score.
22 cout « "En t er the minimum passing score for this test: ";
23 cin » minpassing;
24
25 II Define a PassFailExam object.
26 PassFailExam exam(questions, missed, minPassing)i
27
28 II Display ~he test results .

cout « fixed « setprecision(l);
cout « '"\nEach question counts .. 29

30
31
32
33
34
35

36
37

« exam.getpointsEach() « .. points.\n'";
cout « "The minimum passing score is ..

« exam.getMinpassingScore() « endl;
cout « "The student·s exam score io ..

« exam. getScore () « endl;
cout « "The student's grade is ..

« exam.getLetterGrade() « endl;

38 return 0;
39)

Program Output with Example Input Shown In Bold
How many questions are on the exam? 100 [Enter]
How many questions did the student miss? 2S [Enter]
Enter the minimum passing score for this test : 60 [Enter]

Eac h quest i on counts 1.0 points .
The minimum passing score is 60 . 0
The student ' s exam score is 75.0
The student ' s grade is p

15.6 Polymorphism and Virtual Member Functions

This program uses the PassFailEl<.am object to cal! the qetLet.t.erGrade me.mber fu[\c
rion in line 37. Recall that the PassFailActivity class redefines tbe getLetterGrade
funcrion to report only grades of 'P' or 'F'. Because rhe PassFailExam cJass is derived
from the PassFailActivity class, It inher its the redefined getLetterGrade function.

Software designe rs often llse class hierarchy diagrams. Eke a family tree, a class hietarchy
diagram shows the inheritance relationships between classes. Figure 15-5 shows a class
hiera rchy for the GradedActivity, FinalExam, PassFai lActivity, and Pass Fail Exam
classes. The morc general classes are toward the top of the tree and the more specialized
classes are toward the bottom.

Figure 15~5

Polymorphism

GradedAclivily

l ('>

I
Fina!Exam PassFailActrvity

L -'

PassFailExam

Polymorphism and Virtual Member Functions

CONCEPT: Polymorphism allows an object reference variable or an object pointer to
reference objects of different types, and to call the correct member
fun ctions, depending upon the type of object being referenced.

Look at the following code for a function named displayGrade:

void displ ayGrade (const GradedActivity &activity)
{

cout « setprecision (1) « fixed;
cout « ··The activity 's numeric scor e is

« activity.getscore() « endl;
cout « "The activity's letter grade is ..

« act~vltY · getLetterGrade() « endl;

)

This function uses a canst GradedActivity reference variable as its parameter. When a
GradedActivity object is passed as an argument [0 this function, the funct ion ca lls the
object's getScore and getLetterGrade member functions to display the numeric score
and letter grade. The following code shows how we might call the function.

927

928 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

GradedActivity test(88 . 0);
displayGrade(test);

II The score is 88
/1 Pass test to displayGrade

Thjs code will produce the following output:

The activity's numeric score is 88.0
The activity's letter grade is B

Recall that the GradedActivity class is also the base class for the FinalExam class.
Because of the "is-a" relationship between a base class and a derived class, an object of the
FinalExam class is nOt just a FinalExam object. It is also a GradedActivity objecr. (A

final exam is a graded activity.) Because of this relationship, we can also pass a
Fina l Exam object to the displayGrade function . For example, look at the following code:

/1 There are 100 questions . The student missed 25.
FinalExam test2{lOO, 25);
displayGrade(test2) ;

This code will produce the following output:

The activity's numeric score is 75.0
The activity's letter grade is C

Because the parameter in the disp layGrade function is a GradedAcUvity reference vari

able, it can reference any object rhat is derived from GradedActi vi ty. A problem can occur
with this type of code, however, when redefined member functions are involved. For exam
ple, recalJ that the PassFailActivity class is derived from the GradedActivity class.
The passFai lActivity class redefines the getLetterGrade funct ion. Although we can
pass a PassFailActivity object as an argument to the displayGrade function, we wilt
not get the results we wish. This is demonsrrared in Program 15-9. (This fi le is stored in the
Student Source Code Folder Chapter 15 \PassfailActi v ity.)

Program 15-9

1 ~include <iostream>
2 'include <ioma ni p>
3 lIinclude "PassFa ilActivity.h"
4 using names pace stdi
5

6 II Function prototype
7 void displayGrade(const GradedActivity &);
B
9 int main()

10 {

11 II Create a PassFai lActivity object . Minimum passing
12 II score is 70.
13 passFailActivity test(70);
1.
15 II Set the SCOre to 72 .
16 test.setScore(72)i
17
18 1/ Display the object's grade data . The letter grade
19 II should be 'P'. What will be displayed?
20 displayGrade(test);
21 retur n Oi
22)

15.6 Polymorphism and Virtual Member Functions

23
24 II *** **************.~*~~ *~**~~** ******~ ~~*~**~**** * *** ~~~ ~~* *****

25 II The displayGrade function displays a GradedActivity object's ~

26 II numeric score and l etter grade . ~

27 11******··.* ··********* ******·**·** *** ** ** *** ******* ** ***********
28
29 void displayGrade(const GradedActivity &activity)
30 {
31
32
33
34
35
36 }

cout «
cout «

«
cout «

«

setprecision (1) « fixed;
"The activity's numeric score
activity . getScore() « endl;
"The activity's letter grade
act iv ity . getLetterGrade () «

is ..

is ..
endl ;

Program Output
The activity's numeric score is 72 , 0
The activity 's letter grade is c

As you can see from the exa mple output, the ge tLetterGrade member function retu rned
'C' instead of 'P'. This is because the Grade4Activity class's getLetterGra4e function
was executed instead of [he PassFailActivity class's version of the func tion .

Tb is behavior happens because of rhe wa y C++ ma tches fu nct ion calls with the correct
function . This process is known as binding. In Program 15-9, C++ decides a t compile time
which version of the getLett erGrade fu nction to execute when it enCo unters the cal! to

the function in line 35. Even though we passed a passFailActivity object to the
d i splayGrade funct ion, the activity parameter in the displayGrade function is a
GradedActivity reference variable. Beca use it is of the GradedActivi t y type, the COOl

piler binds [he function call in line 35 with the GradedAc t i vity class's getLetterGrade
fu nction. When the program executes, it has already been determined by the compiler that
the GractedActivity class's getLetterGrade hmction will be called. The process of
matching a function ca ll with a function at compi le time is cal!ed static binding.

To remedy rhis, rhe getLetterGrade function can be made virtual. A virtual function is a
member funcrion tbat is dynamically bound to function calls. In dynamic binding, C++
determines which function to ca ll at mnrime, depend ing on the type of the object responsi
ble for the ca ll. If a GradedActivity object is responsible for the call, C++ will execute the
GradedActivi ty: : getLetterGrade function. If a PassFailActivity object is responsi
ble for the call, C++ will execute the PassFailActi vi ty :: getLetterGrade function.

Virrual functio ns are declared by placi ng the key word virtual before the return type in
the base class's function decla ration, such as

vi rtual char getLetterGrade() const;

This dedaration teUs tne compiler to expect getLetterGrade to be redefined in a derived
doss . Tbe compiler does nor b ind ca lls ro rhe func ri on with rhe actual function. Instead , it
allows the program to bind calls, at runtime, to the version of the funct ion that belongs to

the sa me class as the object responsible for the ca ll.

929

930 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

NOTE : You place the virtual key word only in the function's declara tion or prototype.
If the function is defined outside the class, you do not place the virtual key word in the
fLmction header.

The following code shows an updated version of the GradedAct ivity class, with the
getLetterGrade function declared virtual. This file is stored in the Student Source
Code Folder chapter 15\GradedActivity version 3. The GradedActivity . cpp file
has not changed, so it is not shown again.

Contents of GradedActivity . h (Version 3)

1 fifndef GRADEDACTIVITY_H
2 'define GRADEDACTIVITY_H
J
4 /1 GradedActivity class declaration
5
6 class GradedActivity
7 {
8 protected ;
9 double score ; /1 To hold the numeric score

10 public:
11 II Default constructor
12 GradedActivity()
13 { score = 0.0; }
14
15 1/ constructor
16 GradedActivity(double S)
17 { score = S; }

18
19 II Mutator function
20 void setScore(double s)
21 { score = s; }
22
23 1/ Accessor functions
24 double getScore() const
25 { return score; }
2.
27 virtual char getLetterGrade() constj
28 } ;
29 fendif

The only change we have made to thi s class is ro declare getLetterGrade as virtual
in line 27. This te ll s the compiler not ro bind calls to getLetterGrade with the func
tion at compile time. Instead, calls to the function will be bound dynamically to the
fuonion at runtime.

When a member function is declared virtual in a base ciass, any redefined versions of the
funcrioll thar appear in derived classes automatically become virtual. So, it is not neces
sary to declare the getLetterGrade function in the PassFailActivity class as virtual.
It is still a good idea to declare the funcrion virtual in the passFailActivity class for
documentation purposes. A new version of the PassFailActivity class is shown here.
This file is stored in the Student Sou(ee Code Folder Chapter lS\GradcdActivi t y

Version 3. The passFailActivHy. cpp file has nO[changed, so ir is nor shown again.

J 5.6 Polymorphism and Virtual Member Functions

Contents of PassFailActivity.h

1 'ifndef PASSFAILACTIVITY H
2 idefine PASSFAILACTIVITY H
.3 linclude "GradedActivity . h"

•
5 class PassFailActivity : public GradedActivity
6 (
7 protected:
8 double minpassingScore; II Minimum passing score
9 public :

10 II Default constructor
11 PassFailActivity(): GradedActivity()
12 { minPassingScore = 0 . 0;)
13
14 II Constructor
15 passFailActivity(double rnps) : GradedActivity()
16 { minPassingScore ~ mps ;)
17

18 II Mutator
19 void setMinPaseingScore(doub1e mpe)
20 { minpassingScore = rnps; }
21
22 II Accessors
23 double getMinPassingScare() canst
24 { return rninPassingScore: }
25
26 virtual char getLetterGrade() consti
27 } ;

28 'endif

T he onl y cha nge we have made to this class is to declare getLetterCr ade as virtual in
[me 26. Program 15-10 is identica l to Program 15-9, except it uses the corrected version of
the GradedActivity and passFailActivity classes. This file is also stored in the stu
dent source code folder Chapter lS\GradedActivity Version J.

Program 15-10

1 'include <ios tream>
2 'include <iomanip>
J h nc l ude npassFailActivity _h"
4 using namespace stdi
5
6 II Function prototype
7 void displayGrade(const GradedActivity &1;
8
9 int main()

10 {

11 II Create a passFailActivity object . Minimum passing
12 II score is 70 .
13 passFailActivity test(70)i
14

(program continues)

931

932 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Program 15-10 (continued)

15 /1 Set the score to 72.
16 test.setScore(72) ;
17
18 II Display the object's grade data . The letter grade
19 /1 should be 'P'. What will be displayed?
20 displayGrade(test);
21 return OJ
22)
2 3
24 11* * · ' *.*** * * * * ** * * * * *·*·*** * * * *******·******···*****· ********* **
25 /1 The displayGrade function displays a GradedActivity object's *
26 /1 numeric score and letter grade. *
27 1/**********·*********** ***** *** *************** **·*·** **********.
28
29 void displayGrade{const GradedActivity ,activity)
30 (
31
32
33

3'

cout «
cout «

«
cout «

setprecision (l) « fixed:
MThe activity's numeric score is
act i vity.getScore() « endl;
"The activity's letter grade is ..

35 « actlvity . getLetterGrade() « endl;
36)

Program Output

The activity's numeri c score is 72. 0
The activity 's letter grade is P

Now that the getLetterGrade func tion is declared virtual, the program works prop
erly. This type of behavior is known as polymorphism. The term polymorphism means the
abil ity to take many forms. Program 15-11 demonstra tes polymorphism by passing
objecrs of the GradedActivity and PassFailExam classes to rhe d i splayGrade func
rion. This fi le is stored in the Studcm Source Code Folder Chapter lS\Grad edActivity

Version 3.

Program 15-11

1 'include <iostream>
2 'include <iomanip>
3 'include "PassPaiI Exam . h"
4 using namespace std ;
5
6 II Funct i on prototype
7 void displayGrade(COnst GradedActivity &);
8
9 i nt main{)

10 (
11 II Create a GradedActivi t y object . The score is 88 .
12 GradedActivity testl(88.0);
13

, 5.6 Polymorphism and Virtual Member Functions

~4 // create a PassFailExam object . There are 100 questions,
15 II the student missed 25 of them, and the minimum passing
16 1/ score is 70.
17 PassFailExam test2(100, 25, 70 . 0);
18
19 // Display t he grade data for both objects .
20 cout « "Test 1: \n";
21 displayGrade(test1); II GradedActivity object
22 cout « "\nTest 2:\n";
23 displayGrade(test2); II PassFailExam object
24 return 0;
25)
26

28 II The displayGrade function displays a GradedActivity object's *
29 II numeric score and letter grade . *
)0 11 *********************** ****** *********************** ***********
31
3 ~ void displayGrade(const GradedActivity &activity)
11 {
34
35
36
37
J8
39)

cout «
cout «

«
cout «

«

setprec ision (1) « fixed;
"The activity's numeric score is "
activity.getScore() « endl;
"The activity's letter grade is "

actlvity . getLetterGrade() « endl;

Program Output

Test 1:
The activity's numeric scor e is 88 . 0
The activity's letter grade is B

Test 2;
The activity 's numeric score is 75.0
The activity's letter 9rade is P

Polymorphism Requires References or Pointers
The displayGrade function in Programs 15-10 and 15-11 uses a GradedActivity refer
ence variable as irs parameter. When we call the fu nction, we pass an object by reference.
Polymorphic behavior is not possible when an object is passed by value, however. For
example, suppose the displayGrade function had been written as shown here:

/1 Polymorphic behavior is not possible with this function.
void displayGrade(cons t GradedActivi t y activity)
{

cout « setprecision(1) « fixed;
cout « "The activity's numeric score is

« ac tivity.getScore() « endl;
cout « "The activity'S letter grade is "

« activity . getLetterGrade () « endl;
)

933

934 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

In this version of the function the activity parameter is an object variable, not a refer
ence variable. Suppose we call this vers ion of the function with the following code:

II Create a GradedActivity object. The score is 88.
GradedActivity testl(88.D)i

II Create a PassFailExam object. There are 100 questions,
II the student missed 25 of them, and the minimum passing
1/ score is 70.
PassFailExam test2(lOO. 25, 70.0);

II Display the grade data for both objects.
cout « "Test 1:\0":
displayGrade(testl); 1/ Pass the GradedActivity object
cout « "\nTest 2:\n";
displayGrade(&test2); 1/ Pass the PassFailExam object

This code will produce the fo llowing oUCput:

Test 1:
The activity's numeric score is 88.0
The activity'S letter grade is B

Test 2:
The activity's numeric score is 75.0
The activity's letter grade is C

Even though the getLetterGrade function is declared virtual, static binding still takes
place because activity is not a refe rence variable or a poimer.

Alternatively we could have used a GradedActivity poimer in (he displayGrade func
tion, as shown in Program 15-12. This file is also stored in the Student Source Code
Folder Chapter IS\GradedActivity Version 3.

Program 15-12

1 linclude <iostream>
2 'include <iomanip>
3 lIinclude "PassFailExam . h"
4 using namespace std ;
5

5 II Function prototype
7 void displayGrede(const GradedActivity *);

8
9 int main()

10 (
11 II Create a GradedActivity object. The score is 88.
12 GradedAetivity test1(8B.O)~
13
14 II Create a PassFailExam object . There are 100 questions,

15 II the student missed 25 ot them, and the minimum passing
16 II score is 70 .
17 PassFailExam test2(100 , 25, 70.0);
18

15.6 Polymorphism and Virtual Member Functions

19 II Display t he grade data for both objects.
20 cout « "Test 1; \n";
21 displayGrade(&testl); II ~ddress of t he GradedActivity object
22 c:out « "\nTest 2;\n";

23 displayGrade(&test2); II Address of the PassFailExam object
24 return 0;
2> 1
26

27 11····*·**··*·· ·*···*··*···*··**··*···*··***·*·····*** * •• * •••••••
28 II The displayGrade function displays a GradedActivity object's·
29 II numeric score and letter grade. This version of the function·
30 II uses a GradedActivity pointer as its pa r ameter. •
31 11* •••• ·.*.·* · .. ·· ·* •• •••••••• ·•·.** * ••• ••••
) 2
33 void displayGrade(const GradedActivity ·activity)
34 {
35 cout « set precision(l) « fixed;
36 cout « "The activity's numeric score is
37 « activity->getScore() « endl;
38 cout « "The activity'S letter grade is "
39 « activity->getLetterGrade() « endl;
40 I

Program Output
Test 1 :
The activity's numeric score is 88 . 0
The act ivity'S letter grade is B

Teet 2.
The activity' s numeric score is 75.0
The activity 'S letter grade is P

Base Class Pointers
Pointers ro a base class may be assigned the add ress o f a derived class object . For exa mple,
look a t the fo llowing code:

GradedActivity .exam = new PassFailEXam(lOO, 25, 70 . 0);

This staternenr dyna mically allocates a PassFailExam object and assigns its address to
exam, which is a GradedActivity pointer. We can then use the exam pointer to ca ll member
functions, as shown here;

cout « exam->getScore() « endl;
cout « exam- >getLetterGrade() « endl ;

Program 15· 13 is an example that uses base class poimers to reference derived class
objects. This file is also stored in the Student Source Code Folder Chapter 15\

GradedActivity Version 3.

935

936 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Program 15-13

1 '~nclude <iostream>
2 linclude <iomanip>
J #include "PassFailExam.h"
4 using namespace std;
5
6 II Function prototype
7 void d i splayGrade(const GradedActivity *);
8
9 int main()

10 {
11 /1 Constant for the size of an array.
12 const i nt NUM TESTS = 4;
13
14 /1 tests is an array of GradedActivity pointers.
15 II Each element of tests is initialized with the
16 /1 address of a dynamically allocated object .
17 GradedActivity *tests[NUM_ TESTSJ =
18 { new GradedActivity(88.0),
19 new PassFailExam(lOO, 25, 70.0),

20 new GradedActivity{67 . 0),
21 new PassFailExam(50, 12, 60.0)
22 } ;
23
24 {/ Display the grade data for each element in the array.
25 for (int count 0: count < NUM_TESTS; count++)
26 {
27
28

cout « "Test t" « (count + 1) « ":\n":
displayGrade(tests{cOuntj)i

29 cout « endl;
30 }
31 return 0;
32 }

33
34 11*** *** ***********
35 II The disp1ayGrade function displays a GradedActivity object's *
36 1/ numeric score and letter grade. This version of the function *
37 II uses a GradedActivity pointer as its parameter. *
38 11 ********************* *** **** ** ************** ******** ***********
39
40 void displayGrade(const GradedActivity *activity)
41 {
42 cout « setprecision(l) « fixed;
43 cout « "The activity'S numeric score is "
44 « activity->getscore{) « endl :
45 cout « "The activity's letter grade is "
46 « activity- >getLetterGrade() « endli
4 J)

15.6 Polymorphism and Virtual Member ~unctions

Program Output

Test U:
The activity ' s numeric score is 88.0
The activity's letter grade is B

Test '2 :
The activity's numeric score is 75.0
The activity's letter grade is P

Test t3!
The activity's numeric score is 67 . 0
The activity's letter grade is D

Test '4 :
The activity's numeric score is 76.0
The activity's letter grade is P

Let'S take a closer !ook at this program. An array named tests is defined In li nes 17
through 22. This is an array of GradedActivity pointers. The array elements are in itial
ized with the addresses of dynamically allocated objects. The tests[O) element is initial
ized with the address of the GradedActivity object returned from th is exp ression:

new GraciedActivity{B8.0)

The tests [11 element is initialized with the address of the GradedActivity object
returned from this expression:

new PassFailExam(100, 25, 70 .0)

The tests [2 J element is initialized with the address of the GradedActivity object
returned from this expression:

new GradedActivity(67.0)

Finally, the tests(3] element is initialized with the add ress of the GradedActivity
object returned from this ex pression;

new PassFailExam(50, 12, 60 . 0)

Although each element in the array is a GradedActivity pointer, some of the elements
point to GradedActivity objects and some point to PassFailExarn objects. The loop
in lines 25 through 30 steps through the array, passing each pointer element to the
displayGrade function.

Base Class Pointers and References Know Only
About Base Class Members

Al though a base class pointer can reference objects of any class that derives from the base
class there are limits to what the pointer can do with those objects. Recall that the
Gra~edActivity class has, other than its constructors, only three member fllnctions:
setScore, getScore, and getLetterGrade. So, a GradedActivity pointer can be used

937

938 Chapter 15 Inheri tance, Polymorphism, and Virtual Functions

to call only those funct ions, regardless of the type of object it points to. For example, look
at the fo llowing code.

Cradcd~ctivity *exam = new PassFai l Exam(lOO , 25, 70.0) ;
cout« exam->getScore() «endl; II This works .
cout « exam->getLetterGrade() «endl; /1 This works .
cout « exam->getPointsEach() «endl; II ERROR! Won ' t work !

In chis code, exam is a GradedActivity pointer, and is assigned the address of a
PassFailExam object. The GradedActivi ty class has only the setScore, getScore, and
getLetterGrade member functions, so those are the only member functions tha t the exam

variable knows how to execute. The last statement in this code is a call co the
getPointsEac h member function, which is defined in the PassFailExam class. Because tbe
exam variable only knows about member functions in the Gr adedActivity class, it can not
execute this function.

The "Is_a" Relationship Does Not Work in Reverse
It is important to note that the "is-a" relationship does not work ill reverse. Although the
statement "a final exam is a graded activi ty" is t rue, the statement "a graded activity is a
fina l exam" is not true. This is because nOt all graded activities are fina l exams. Likewise,
not all GradedActivity objects a rc Fi nalExam objects. So, the fo llowing code will not

work.

1/ Cr eate a GradedActivity object .
GradedActivity *gaPointer = new GradedActivity(88.0) ;

// Error ! This will not work .
~inalExam *fePointer ~ gaPointer;

You cannot ass ign the address of a GradedActivity object to a FinalExam pointer. This
makes sense because FinalExam objects Ilave capabilit ies that go beyond those of a

GradedActivity object. Interestingly, the C++ compiler will let you make such an assign
ment if you use a type cast, as shown here:

II Create a GradedActivity object .
GradedActivity *gaPointer = new GradedActiv i ty(88 . 0);

/1 This will work, but with limitations.
FinalExam *fePointer = static cast<FinalExam *> (gaPo i nter) ;

After this code executes, the derived class pointe r fePointer will be pointi ng to a base

class object. We can use the pointer to access members of [be object, but only the members
that exist. The following code demonstrates:

1/ This wi l l work . The object has a getScore function .
cout « fepointer->getScore{) « endl ;

II This will work . The object has a getLetterGrade function .
cout « f e pointer- >getLetterGrade() « endl;

II This will compile , but an error will occur at runtime.
II 'T'h'l obj ... ci:: d.., n o+-. h",v<> '" 'JQ~p..,.; ... t"p. h ;,_, ... ,,10;<:>" _

cout « fepointer - >getpointsEach() « endl;

15.6 Polymorphism and Virtual Member Functions

In this code fePointer is a FinalExam pointer, and it poims to a GradedActivity
object. The first two cout statements work because the GradedActivity object has
getS core and a getLetterGrade member functions. The last cout Statement will cause
an error, however, because it calls the getPointsEach member function. The
GradedActivity object does not have a getPointsEach member function.

Redefining vs. Overriding
Earlier in th is chapter you learned how a derived class can redefine a base class member
function. When a class redefines a virtual function, it is said that the class overrides the
function. In C++, the difference between overriding and redefining base class functions is
thac overridden functions are dynamically bound, and redefined funct ions are statically
bound. Only virtual functions can be overridden.

Virtual Destructors
When you write a class with a destructor, and that class could potentially become a base
class, you should always declare the destructor virtual. This is because the compiler will
perform static binding on the destructor if it is not declared virtual. This can lead to
problems when a base class pointer or reference variable references a derived class object.
If the derived class has its own destructor, it will nOt execute when the object is destroyed
or goes out of scope. Only the base class destructor will execute. Program 15-14
demonstrates.

Program 15-14

1 'inc lude <iostream>
2 using names pace std;
3
4 II Animal is a base class.
5 class Animal
6
7 public;
8 II constructor
9 Animal ()

10 { cout « "Animal constructor executing. \n"; }
11
12 II Destructor
13 - Animal ()
14

15 } ;
16

{ cout « "Animal destructor executing. \0"; }

17 II The Dog class is derived from Animal
18 class Dog : public Animal
19 {
20 public:
21 II Co nstructor

22 Dog(l: Animal()
23 { cout « "Dog constructor execut i ng . \n"; }
24

(program continues)

939

940 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Program 15w 14 (continued)

25 II Destructor
26 -Dog()
27 { cout « "Dog destructor executing.\n" ; }
28 } ;
29
30 // ** ****** *************************** *** *** .*.j****
31 II main f unction •
32 //********* * ****** ************** *** ** ***** * ** *** ***
33
34 int main ()
35 {
36 1/ Create a Dog object , referenced by an
37 / / Animal pointer.
38 Animal *myAnimal : new Dogi

39
40 II Delete the dog object .
41 de l ete myAnimal;
42 retur n 0 ;
43)

Program Output
Animal constructor executing.
Dog constructor executing.
Animal destructor executing.

This program declares two classes: Animal and Dog. Anima l is the base class and Dog is
the derived class . Each class has its own constructo r and destructor. In line 38, a Dog

object is crea ted and its address is stored in an Animal pointer. Both the Animal and the
Dog constructors execute. In hne 41 the o bject is deleted. When this sratt:menr executes,
however, only the Animal destructor executes. The Dog desrrucror does nor execute
because the object is referenced by an Animal poimer. We can fix th is problem by decla r
ing the Animal class destructor virtual, as shown in Program 15-15.

Program 15-15

1 'include <iostream>
2 using namespace std;
3
4 II Animal is a base c lass.
5 class Animal
6 {
7 public:
8 II Constructor
9 Anima l()

10 { cout « "Animal constructor executing . \ n"; }
11

, 5.6 Polymorphism and Virtual Member Functions

12 II Destructor
13 virtual -Animal()
14 { cout « ~Animal destructor executing.\n"; }
1 5 } ;

16
17 II The Dog class is derived from Animal
18 class Dog : public Animal
19 {
20 public:
21 II Constructor
22 Dog(): Animal()
23 { cout « ~Dog constructor executing.\n"; }
24
25 II Destructor
26 -Dog()
27 { cout « HDog destructor executing.\n " ; }
28 } :
29
30 11**************************-*-********-**-********
31 II main function •
32 11******-**---*****-****--*-***--******-*****-*****
33
34 int main ()
35 {
36 II Create a Dog object, referenced by an
37 II Animal pointer.
38 Anima l *myAnimal ~ new Dog;
39
40 II Delete the dog object .
41 delete myAnimal;
42 return 0 :
43)

Program Output
Anima l constructor executing ,
Dog constructor executing.
Dog destructor executing.
Animal destruc tor executing .

The only thing that has changed in this program is that the Animal class destructor is
declared virtual in line 13. As a result, the destructor is dynamically bound at runtime.
When the Dog object is destroyed, both the Animal and Dog dest ructors execute.

A good programming practice to follow is that any class that has a virtua l member func
t ion should also have a virtual destructor. If the class doesn't require a destructor, it should
have a virtual destructor that performs no statements. Remember, when a base class func
tion is declared virtual, all overridden versions of the function in derived classes auto
matica lly become virtua l. Includ ing a virtual destructor in a base class, even one that does
nothing, will ensure that any derived class destructOrs will also be virtual.

941

942 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Abstract Base Classes and Pure Virtual Functions

CONCEPT: An abstract base class cannot be instantiated, but o ther classes are
derived from it. A pure virtual function is a virtual member function of a
base class that must be o verridden. When a class contains a pure virruaJ
function as a m ember, th at class becom es an abs tract base class.

Sometimes it is helpful to begin a class hierarchy with an abstract base class. An abstract
base class is not instantiated itself, but serves as a base class for other classes. The abstract
base class represents the generic, or abstract, form of all the classes that are derived from it.

For example, consider a facrory that manufactures airplanes. The facto ry does not make a
generic airp lane, but makes three specific types of p lanes: twO different models of prop
driven planes, and one com muter jet model. The computer software that catalogs the
planes might use an abstract base class called Airplane. That class has members repre
senting the common characteristics of aU airplanes . In addition, it has classes for each of
the three specific airplane models the facto ry manufactures . These classes have members

representing the unique characteristics of each type of plane. The base class, Airplane, is
never instantiated, but is used to derive the other classes.

A class becomes an abstract base class when one or more of its member fu nctions is a pure
virtual (unction. A pure virtual function is a virtual membe r funct ion declared in a manner
similar to the fo llowing:

virtual void shoWlnfo{) = 0 ;

The = 0 nocation indicates that shOWlnfo is a pure virtual function. Pure virtual functions

have no body, or definition, in the base class. T hey must be overridden in derived classes.
Additiona ll y, the presence of a pure virrual funct ion in a class prevents a program from
instantiating the class. The compile r will genera te an error if you attempt to define an
object of an abstract base class.

For example, look at the followi ng abstract base class Student. It ho lds data common to
all students, bur does not hold all rhe d ara needed for students of specific majors.

Contents of student. h
1 /1 specification file for the Student class
2 jifndef STUDENT_ H
3 'define STUDENT H
4

5
#include <cstr i ng> // For strcpy

6
7
8
9

II Constants for array sizes
const int NAME SIZE = 51i
const int ID S I ZE = 21;

10 class Student
11 {

, 5.7 Abstract Base Classes and Pure Virtual Functions

12 protected:
13
14
15
16
17
18
19
20
21
22

char namelNAME_ SIZEJ ;
char idNumberIID_SIZE Ji
int yearAdmitted;

II Student name
II Student ID

II Year student was admitted
public :

II Default constructor
Student ()

{ name[O] = '\0';
idNumber(O] = '\0';
yearAdmitted = 0 ; }

23 II Constructor
24 Student(const cha r *n, canst char wid, int year)
2S { set{n, id, year); }
26
27
28
29

30
31
32
33
3.

II The set function sets the attribute data .
void set(const char *n, const char

{ strncpy(name, n, NAME_SIZE);
name[NAME_SIZE - 1] = '\0';
strncpy(idNumber, n, IO_S1ZE);
idNumber [IO_SIZE - 1) = '\O'i
yearAdmitted = year; }

3S II Accessor functions
36 canst char *getName() canst
37 { return name; }
3.
39 canst char *getIdNUm() const
40 { return idNumberi }
41
42 int getYearAdmitted() canst
43 { return yearAdmitted;
44

45 II Pure vi rtual function

wid, int year)
II Copy the name
II Place a null character
II Copy the 10 number
II Place a null character
II Assign year admitted

46 virtual int getRemainingHourS() const - 0;
47 } ;
48 jendif

The Student class contains members for storing a student's name, ID number, and year
admitted. It also has constructors and a mutator function fo r setting values in the name,
idNumber, and yearAdmitted members. Accessor functions are provided that return the
values in the name, idNumber, and yearAdmitted members. A pure virtual function
named getRemainingHours is also declared.

T he pure virtual fu nction must be overridden in classes derived from the Student class. It

was made a pure virtual function because this class is intended to be the base fo r classes
that represent students of specific majors. For example, a CsStudent class might hold the

data for a computer science srudent, and a BiologyStudent class might hold the data for
a biology student. Computer science students must take courses in different disciplines
than those taken by biology students. It stands to reason that the CSStudent class will cal
culate the number of hours taken in a different manner than rhe BiologyStudent class .

Let's look at an example of the CsStudent class.

943

944 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Contents of CsStudent. h

1 II Specification file for the CsStudent class
2 'ifnde f CSSTUDENT_H
3 ~define CSSTUDENT_H
4 iinclude "Student . h"

5
6 /1 Constants for required hours
7 canst int MATH_ HOURS == 20 ; /1 Math hours
8 const int CS_ HOURS = 40; II Computer science hours
9 canst int GEN ED HOURS = 60; /1 General Ed hours

10
11 class CsStuden t : public Student

{ 12
13 ,.
15
10
17

private:
int mathHours;
int csHours;
int genEdHours;

18 public :

II Hours
/I Hours
II Hours

19 /1 Default constructor
20 CsStudent() : Student()
21 { mathHours = 0 ;
22 csHours '" 0 ;
23 genEdHours = 0; }
2.
25 1/ Constructor

of
of
of

math taken
Computer Science taken
general education taken

26 csStudent(const char *n, canst char *id, int year)
27 Student(n, id, year)

28 { mathHours = 0;
29 csHours = 0;
30 genEdHours = 0 i }

31
32 1/ Mutator functions
33 void setMathHoUrs(int rnh)
34 { mathHours ." mh; }
35
36 void setCsHours (int csh)
37 { csHours = csh; }

38
39 void se tGenEdHours(int geh)
40 { genEdHours "" geh; }
41
42 II Ove~ridden getRemainingHours function,
43 II defined in CsStudent . cpp
44 virtual int getRemainingHourS() canst;
45 } ;
46 'endif

This file declares the following const int member variables in lines 7 through 9:
MATH_HOURS, CS _HOURS, and GEN _ ED_HOURS. These varia bles hold the required number of
math, computer science, and general education hours for a computer science studem. The
CsStudent class, which derives from the Student class, declares rhe following member
variables in lines 14 through 16: mathHours, csHours, and genEdHours. These variables

, 5.7 Abstract Base Classes and Pure Virtual Functions

hold the number of math, computer science) and general education hours taken by the stu
dent. Mutator functions are provided to store values In these variables. In addition) the
class overrides the pure virtual getRemainingRours function in the CsStudent.cpp file.

Contents of CsStudent . cpp
1 tinclude <iostream>
2 'include "CsStudent.h"
3 using namespace std; ,
5 //**** ********************** **************************
6 // The CsStudent::getRemainingHours funct ion returns *
7 /1 the number of hours remaining to be taken. •
8 II**** * *********~* * *********·*********·*********** * ***
9

10 int CsStudent::getRemainingHours() const
11 {
12 int reqHours, II Total required hours
13 remainingHours; II Remaining hours
14
15 II Calculate the required hours.
16 reqHours ; MATH_HOURS + CS_HOURS + GEN_ED_HOURS;
17
18 II Calculate the remaining hours .
19 remainingHours = reqHours - (mathHours + csHours +
20 ge nEdHOurS)i
21
22 II Return the remaining hours .
23 return remainingHours;
24)

Program 15-16 provides a simple demonstration of the class.

Program 15-16

1 II This program demonstrates the CsStudent c l ass, which is
2 // derived from t he abstract base class, Student .
3 'include <iostream>
4 'include "CsStudent . h"
5 usi ng namespace std;
6
7 int main()
8
9 II Create a CsStudent object f or a student .

10 CsStudent student("Jennifer Haynes", "167w9B337", 2006);
11

II Store values for Math, Computer Science, and Genera l
II Ed hours.
student.setMathHoUrs(12): II Student has taken 12 Math hours

12

13

I'
IS
16
17

s t udent . setCsHours(20) ; /I Student h., taken 20 CS hours
student . setGenEdHOUrS(40)i /I Student has taken 40 Gen Ed hours

(program continues)

945

946 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Program 15-16 (continued)

18 1/ Display the number of remaining hours.
19 cout « "The student" « student.getName{)
20 «needs to take " « student . getRemainingHours ()
21 « " more hours to graduate. \0 ";
22
23 return 0;
24)

Program Output
The student Jennifer Haynes needs to take 48 more hours to graduate .

Remember the followlOg points about abstract base classes and pure virtual functions:

• When a class contains a pure virtual function, it is an abscracr base class.
• Pure virtual funct ions are declared with tb e '" 0 notation.
• Abstract base classes cannot be instantiated.
• Pure virrual func tions have no body, or definition, in the base class.
• A pure virtual fu nction must be overridden at some poine in a derived class m

order fo r it to become nonabstracL

~ Checkpoint
15.9 Explain the difference between overloading a function and redefinmg a function.

1S .10 Explain the difference be tween sta tic binding and d ynarllic billdillg.

15.11 Are virtual functions sratically bound or dynamically bound?

15.12 What wi ll the fo llowing program display?

*include <iostream.>
using namespace std;

class Firs t
{
protected:

int a;
public:

First(int x = 1)

{ a = Xi }

int getVal()
{ return a j }

) :

class Second
{

private;
i nt b ;

public:

public First

Second(int y = 5)
{ b " y: }

int getVal ()
{ return b; }

):

int main ()
(

First objectl;
Second object2;

15.7 Abstract Base Classes and Pure Virtual Functions

cout « objectl .getVal() « endl ;
cout « object2.getVall) « endl :
return 0;

)

15.13 What will the following program display?

'include <iostream>
using names pace std i

class First
{

protected:
i nt a;

pUblic:

) ;

First(int x 1)
{ a = Xi }

void twist ()
{a*=2:}

int getVal()
(twist(); return a ; }

class Second
(

public First

private :
int bi

public:

) ;

Second(int y = 5)
{ b - y;)

void twist()
{b*::10;}

int main()
(

First objectl;
Second object2;

caut « abjectl . getval() « endl;
caut« object2.getVal{) «endl :
return 0;

15.14 What will the following program display?

'include <iostream>
using namespace std;

class First
{
protected :

int a;

947

948 Chllpter , 5 Inheritanc.e, Polymorphism, and Virtual function!)

publ.ic!

} ,

First(int x = 1)
{ a = X; }

virtual void twist(J
{a'll=2;}

int getVal()
{ twist(); return a; }

class Second public First
{
private:

int bi
public:

) ,

Second(int y = 5)
{ b = Yi }

virtual void twist()
{b*"' lO:}

int main()
{

)

First objectl;
Second object2;

cout « objectl.getVal() « endl;
cout « object2.getVal() « endl;
return 0;

15.15 What will the following program display?

'include <iostream>
using names pace std;

class Base
{
protected :

int basevar;
public :

8ase(int val = 2)
{baseVar val;}

int getvar()
{ return basevar; }

),

class Derived
{

public Base

private:
int derivedVar;

public:

);

oerived(int val = 100)
(derivedVar val;

int getVar { 1
{ return derivedVar; }

int main ()
{

}

Base *optr;
Derived object;

optr = &object;
cout « optr->qetVart) « endl j
return 0 :

Multiple Inheritance

, 5.8 Multiple Inheritance

CONCEPT: Multiple inheritance is when a derived class has two or more base classes.

Previously we discussed how a class may be derived from a second class rhar is itself
de rived from a third class. The series of classes establishes a cha in of inheritance. In such a
scheme, you might be tempted to think o f the lowest class in the chain as having multiple
base classes. A base class, however, should be thought of as the class thar another class is
directly derived from. Even though there may be seve ral classes in a chain, each class
(below the topmost class) only has one base class.

Another way of combining classes is through multiple inheritance. Multiple inheritance is
when a class has twO Or more base classes. This is iHustrated in Figure 15-6.

Figure 15-6

~T
[Class C I

in Figure 15-6, class C is directly derived from classes A and B, and inherits the members
of both. Neither class A nor B, however, inherits members from the other. Their members
are only passed down to class C. Let's look at an exam ple of multip le inheritance. Con
sider the two classes decla red here:

Contents of Date. h

1 /1 Specification file for the Date class
2 'ifndef DATE H
3 ' define DATE H ,
5 class Date
6 {

949

950 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

7 protected:
S int day;

9 int month;
10 int year;
11 public :
12 II Default constructor
13 Date(int d, int m, int y)
14 { day = 1; month'" 1; year - 1900 j }
15
16 / I Constructor
17 Date(int d, int m, i nt y)
18 { day = d; month = m; year'" Yi }
I.
20 /1 Accessors
21 int getDay () canst
22 { return day; }

23
24 int getMonth() const
25 { return month; }
26
27 int getYear() canst
28 { return year; }
29 } ;
30 'endif

Contents of Time. h

1 II Specification file for the Time class
2 'iindef TIME H
3 'define TIME H
4
5 class Time
6 {
7 protected :
8 int hour;
9 int min;

10 int sec i
11 public;
12 1/ Default constructor
13 Time()
14 { hour '" 0; min ... 0 i sec - 0;)
15
16 II Constructor
17 Time(int h, int m, int 5)

18 { hour"" h i min"" m; sec"" s; }
1.
20 II Accessor functions
21 int getHour() const
22 { return hour; }
23

15.8 Multiple Inheritance

24 int getMin() const
25 { return min ; } 2.
27 int getSec() const
28 { return sec; }
29 } ;
30 'endif

These classes are designed to hold inregers that represent the date and time. They both can
be used as base classes for a third class we will call DateTime:

Contents of Date Time. h

1 1/ Specification file for the DateTime class
2 lifndef DATETIME H
3 tdefine DATETIME H
4 #include "Date.h"
5 Unclude "Time.h"

•
7 1/ Constant for string size
8 canst int DT_ SIZE - 20;
9

10 class DateTime : public Date, public Time
11 {

12 protected:
13 char dateTimeString[OT_SIZE) i
14 pUblic:
15 // Default constructor
16 OateTime();
17

18 // Constructor
19 DateTime(int, int, int, int, int, int);
20
21 II Accessor function
22 canst char *getDateTime(} const
23 { return dateTimeString; }
24) ;
25 'endif

In line 10, the first line in the DateTime declaration reads

class DateTime : public Date, public Time

Notice there are two base classes listed, separated by a comma. Each base class has its
own access specification. The genera l format of the first line of a class declaration with
multiple base classes is

class DerivedClassName AccessSpecification BaseClassName,
AccessSpecification BaseClassName [, ... 1

The notation in the square brackets indicates that the list of base classes with their access
specifications may be repeated. (It is possible to have several base classes.)

951

952 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Contents of OateT ime . cpp

2
3

•
5

II Implementation file
#include <cstring>
Hnclude <cstdlib>
tinclude "DateTime . h"

for the
II For
II For

6 II Constant for temp array size
7 const int TEMP_SIZE = 10;
8

DateTime class
strcpy and strcat
itoa

9

10
11

12
13
14

15
16
17
18

1/**********************·************* ************
1/ Default constructor •
1/********************************** **************

DateTime::DateTime() : Date(), Time()
(

strcpy(dateTimeString, "1/1/1900 0 : 0:0");
}

11-···--19 1/ Constructor •
20 1/***********************************.*·**********
21
22 DateTime :: DateTime(int dy, i nt mon, int yr, int hr, int mt, int se)
23 Date(dy, mon , yr), Time(hr, mt, se)
24 {
25 char temp(TEMP_SIZE]; II Temporary work area for itoa()
26
27 II Store the date in dateT i meString, in the form MM/DO/YY
28 strcpy(dateTimeString, itoa(getMonth(), temp, TEMP_SIZE»);
29 strcat (dateTimeString , "I") i

30 strcat(dateTimeString, itoa(getDay(), temp, TEMP_SIZE»);
31 strcat(dateTimeString, "/tI);
32 strcat{dateTimeString , itoa(getYear(), temp, TEMP_SIZE»;
33 strcat(dateTimeString,"") i
3.
35 II Store the time in dateTimeString, in the form HH:MM:SS
36 strcat(dateTimeString, itoa(getHour(), temp, TEMP_SIZE»:
37 strcat(dateTimeString, ";");
38 strcat(dateTimeString, itoa(getMin(), temp, TEMP_ SIZE»;
39 strcat(dateTimeString, ":");
40 strcat(dateTimeStri ng, itoa(getsec(), temp, TEMP_SIZE»;
41 }

The class has twO constructors: a default constructor and a constructor that accepts argu
ments for each component of a date and time. Let's look at the function header for the
default consrrucroc, in line 13:

DateTime::DateTime() : Date(), Time()

, 5.8 Multiple Inheritance

After the DateTime constructor's parentheses is a colon, foHowed by calls to the Date
constructor and the Time constructor. The calls are separated by a comma. When using
multiple inheritance, rhe general forma t of a derived class's constructor header is

DerivedClasSName(parameterList) : BaseClasSName(ArgumentList) ,
BaseClaSSName(ArgumentList)I, ... 1

Look at the function header for the second constructor, which appears in lines 22 and 23:

DateTime::DateTime(int dy, int mon , int yr, int hr, int mt, int sel :
Date(dy, mon, yr), Time(hr, mt, SC)

This DateTime constructor accepts arguments for the day (dy), month (man), year (yr),
hour (hr), minute (mt) , and second (sc). The dy, mon, and yr parameters are passed as
arguments ro the Da t e consrructor. The hr, mt, and se parameters are passed as argu
ments to the Time constructor.

The order that the base class constructor calls appea r in the list does nOt marrero They are
always called in the order of inheritance. That is, they are always ca lled in the order they
are listed in the first line of the class declaralion. Here is line 10 from the DateTime. h file:

class DateTime : public Date, public Time

Because Date is listed before Time in the DateTime class declaration, the Date constructor
wi ll always be called first. If the classes use destructors, they are always ca lled in reverse
order of inheritance. Program 15- 17 shows (hese classes in use.

Program 15-17

1 II This program demonstrates a class with multiple i nheritance.
2 #include <iostream>
3 'include "DateTime.h"
4 using namespace std ;
5
6 int main()
7 (
8 II Define a DateTime object and use the default
9 II constructor to initialize it.

10 DateTime emptyDaYi
11
12 II Display the object'S date and time.
13 cout « emptyDay . getDateTime() « endl ;
14
15 II Define a DateTime object and initialize it
16 II with the date 2/4/60 and the time 5 : 32:27 .
17 DateTime pastDay(2, 4, 60, 5, 32, 27);
18

19 1/ Displ ay the object'S date and time.
20 cout « pastDaY . getDateTirne{) « endl;
21 return 0 ;
22)

(program output continues)

953

954 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Program 15-17 (continued)

Program Output
1/111900 0:0:0

4 /2/60 5:32:27

NOTE: It should be noted that multiple inheritance opens the opportunity for a derived
class to have am biguous members. Tha t is, two base classes may have member va riables or
functions of the same name. In situations like these. the derived class should always redefine
or override the membe r functio ns. Calls ro the member functions o f the appropriate base
class can be performed within the derived class Llsing the scope resolution operator(::). T he
derived class can also access [he ambiguously named member variables of the correct base
class using the scope resolution operator. If these steps aren't taken, the compiler wi ll
generate an error when i(can't (eil which member is being accessed.

~ Checkpoint
15.16 D oes (he following d iagram depict mu ltip le inherita nce or a chain of inheritance?

~ Class A

~r;(:;-:ia~SS"'B--'1
rei ("""ia~ss7(' I

15.17 Ooes the following d iagra m depict mu ltiple inhf'rita nce or a ch:1in of inheritance?

I Class A ~ ---1 Class B

1 (iass (1

15.18 Examine the fo llowing classes. The ta ble lists the variables that are members of
the Third class (some are inherited). Complete the (a ble by filling in the access
specification each member will have in the Third class. Write "inaccessible" if a
member is inaccessible to the Third class.

class First
{

} ;

private ;
i nt a ;

protected :
double bi

public:
long c;

class Second
{

};

private:
int d;

protected :
double e;

public :
long fi

protected First

class Third
{

public Second

} ;

private :
int g;

protected :
double h;

pUblic:
long i;

15.8 Multiple Inheritance

Member Variable Access Specification in Third Class

a

b

c

d

e

f

g

h

i

15.19 Examine the following class declarations:

class Van
{
protected:

int passengers;
public:

Van(int p)
(passengers p;}

} ;

class FourByFour
{
protected :

double cargoWeighti
public:

FourByFour(float w)
{ cargoWeight ; W; }

} ;

Write the declaration of a class named sportutility. The class should be
derived from both the Van and FourByFour classes above. (This should be a case
of mu ltiple inheritance, where both Van and FourByFour are base classes.)

955

956 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Review Questions and Exercises

Short Answer
1. What is an "is a" relationship?

2. A program uses two classes: Dog and Poodle. Which class is the base class and which
is the derived class?

3. How does base class access specification differ from class member access specification?

4. What is the difference between a protected class member and a private class member?

5. Can a derived class ever directly access rhe private members of its base class?

6. Which constructor is called fi rst, that of the derived class or the base class?

7. What is the difference between redefining a base class function and overriding a base
class funct ion?

8. When does static binding take place? When does dynamic binding take place?

9. What is an abstract base class?

10 . A program has a class Potato, which is derived from the class vegetable, which is
derived from the class Food. Is this an example of multiple inheritance? Why or why not?

11. What base class is named in the line below?

class Pet : public Dog

12. What derived class is named in the line below?

class Pet : public Dog

13. What is the class access specification of the base class named below?

class Pet : public Dog

14. What is the class access specification of the base class named below?

class Pet : Fish

15. Protected members of a base class are like _____ members, except they may be
accessed by derived classes.

16. Complete the tab le below by filling in private, protected, public, or inaccessible in the
right-hand column:

In a private base class, this base class
MEMBER access specification ...
private

protected

public

. .. becomes this access specification
in the derived class .

17. Complete the table below by filling in private, protected, publ ic, or inaccessible in the
right-hand column:

[n a protected base class, this base class
MEMBER access specification . ..

private

protected

public

Review Questions and Exercises

... becomes this access specification
in the derived class.

18. Complete the table below by filling in private, protected, public, or inaccessible in the
right-hand column:

In a public base class, this base class
MEMBER access specification . ..
private

protected

public

... becomes this access specification
in the derived class .

Fill-in-the-Blank

19. A derived class inherits the ____ of its base class .

20. When borh a base class and a derived class have constructors, the base class's con-
structor is called (first/last).

21. When both a base class and a deri ved class have destructors, the base class's construc-
tor is called (first/last).

22. An overridden base class function may be called by a func tion in a derived class by
using the operator.

23. When a derived class redefines a function in a base class, which version of the func-
tion do objects that are defined of the base class call? ____ _

24. A(n) --,--, ___ member function in a base class expects to be overridden in a
derived class .

25. binding is when the compiler binds member function calls at compile time.

26. binding is when a function call is bound at runtime.

27. is when member functions in a class hierarchy behave differently, depend
ing upon which object performs the ca lL

28. When a pointer to a base class is made to point to a derived class, the pointer ignores
any the derived class performs, unless the function is ____ _

29. A(n) ____ class cannot be instantiated.

30. A(n) function has no body, or defini tion, in the class in which it is declared.

31. A(n) of inheritance is where one class is derived from a second class,
which in turn is derived from a th ird class.

32. _ ____ is where a derived class has two or more base classes.

33. In multiple inheritance, the derived class should always ___ __ a function thar
has the same name in more than one base class .

957

958 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Algorithm Workbench

34. Write the first line of the decla ration fo r a Poodle class. The class should be derived
from the Dog cI:1sS with public base class access.

35. Write the first line of the declaration for a SoundSystem class. Use multiple inherit
ance to base the class on the CDplayer class, the Tuner class, and the
CassettePlayer class . Use public base class access in rill cases.

36. Suppose a class named Tiger is derived from both the felis ChlSS and rhe
Carnivore class. Here is the first line of the Tiger class declaration:

class Ti ger: public Felis, public Carnivore

Here is the fU llction header for the Tiger constructor:

Tiger(lnt x, int y) : Carnivore(x) , Fel is(y)

Which base class constructor is called fi rst, Carn iVore or Felis?

37. Write the declaration for class B. The class's members should be

• m, an integer. This varia ble shou ld not be accessible to code outside the class or to

member functions in any cl,lSS derived from c1<lSS B.

• n, an inreger. This variable should not be accessible to code ourside the class, bur
should be accessible to member functions in any class derived from class B.

• setM, getM, setN, and getN. These are the set and get functions for the member
Varil.lbles m and n. The~e fUllction~ should be accessible to code outs ide tbe class.

• calc, a public virtual member function that returns rhe va lue of m rimes n.

Nex t write the declarat ion for class D, which is derived from class B. The class's mem~

bers should be
• q, a float. This variable should nOt be accessi ble to code outside the class but

should be accessib le to mem ber functions in any class derived from class D.

• r, a float. This variable should not be accessible to code outside the class, but
should be accessible to mem ber functions in any class derived from class D.

• setQ, getQ, setR, and getR. These arc the set and get functio ns for the member
variab les q and r. These functions should be accessible ro code outside the ci<lss.

• calc, a public member function that over rides the base class calc function. Th is
function should return the value of q times r.

True or False
38. T

39. T

40. T

F

F

F

The base class's access specificarion affects the way base class member func~
tions may access base class member variables.

The base class's access specification affects the way the deri\'cd class inherits
members of the base class.

41. T F

Private members of a private base class become inaccessible to the derived class.

Public members of 3 privare base class become private members of rhe
derived class.

42. T

43. T

F

F

Protected members of a private base class become public members of the
derived class.

Public members of a protected base class become private members of the

derived class.

44. T F

45. T F

46. T F

47. T F

48. T F

49. T F

50. T F

51. T F
52. T F

Review Questions and Exercises

Private members of a protected base class become inaccessible to the
derived class.

Protected members of a public base class become public members of the
derived class.

The base class constructor is called after the derived class constructor.
The base class destructor is called after the derived class destructor,

It isn't possible for a base class to have more than one constructor.

Arguments are passed to the base class constructor by the derived class
constructor.

A member function of a derived class may not have the same name as a mem
ber function of the base class.

Pointers to a base class may be assigned the address of a derived class object.

A base class may nOt be derived from another class.

Find the Errors

Each of the class declarations and/or member function definitions below has errors. Find as
many as you can.

53. class Car, public Vehicle
{

}

public:
Car() i
-Car() i

protected:
int passengers;

54. class Truck, public : Vehicle, protected
{

} ;

private:
double cargoWeighti

public:
Truck() ;
-Truck() i

55. class SnowMobile
{

Vehicle

} ;

protected:
int horsePower;
double weight;

public:
SnowMobile(int h, double wI, Vehicle(h)

{ horsePower = h; }
-SnowMobile () ;

56. class Table : public Furniture
{

protected:
int numSeats;

959

960 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Solving the
Employee and
Product.ion_

Worker Classes
Problem

) ,

public :
Table(int n) ! Furniture (numSeats)

{ numSeats = n; }
-Table() ;

57. class Tank : public Cylinder
(

) ,

private:
int fuelType;
double gallons;

public:
Tank() ;
-Tank ();
void setContents(double);
void setcontents(double);

58 . class Three : public Two : public One
{

) ,

protected:
int x;

public:
Three(int a, int b , lnt e), Two(b), Three(c)

{ x '" a; }
-Three ();

Programming Challenges

1. Employee and ProductionWorker Classes

Design a class named Employee. The class should keep the following information in
member variables:

• Employee name
• Employee number
• Hire date

Write one or more constructors and the appropriate accessor and mutator functions
for the class.

Next, write a class named ProductionWorker that is derived from the Employee

class. The ProductionWorker class should have member variables to hold the follow
ing information:

• Shift (an integer)
• Hourly pay rate (a double)

The workday is divided into two shifts: day and night. The shift variable will hold an
integer value representing the shift that the employee works. The day shift is shift 1
and the night shift is shift 2. Write one or more constructors and the appropriate
accessor and mutator functions for the class. Demonstrate the classes by writing a
program that uses a ProduetionWorker object.

Review Questions and Exercises

2. ShiftSupervisor Class

In a pa rticulat factory a shift superviso r is a sa laried employee who supervi ses a
sh ift. In addition to a salary, the shift supervisor earns a yearly bonus when his or
her shi h meets production goals. Design a ShiftSupervisor class that is de rived
from the Emp l oyee class you created in Programming Cha llenge 1. The
ShiftSupervisor class should have a member variable that holds the annua l sa lary
and a membe r variable that holds the annual production bonus tha t a sh ih supervi
sor has earned. Write one or more conStruCtors and the ap propria te accessor and
mutator functio ns for the class. Demonstrate the class by wt iting a program that
uses a ShiftSupervisor objecL

3. TeamLeader Class

In a particular factory, a team leader is an hourly paid production worker who leads a
small team. In addition to hourly pay, team leaders earn a fixed monthly bonus. Team
leaders are required to attend a min imum num ber of hours of training per yea r.
Design a TeamLeader class that extends the ProductionWorker class you designed in
Programming Challenge 1. The TeamLeader class should have member variables for
the monthly bonus amount, the required number of training hours, and the number of
training hours that the team leader has attended. Write one or more constructors and
the appropriate accessor and mutator funct ions for the class. Demonstrate the class by
writing a program rhat uses a TeamLeader object.

4. Time Formal

In Program 15-17, the file Time.h contains a Time class. Design a class ca lled
MilTime that is derived from the Time class. The MilTime class should convert time
in military (24-hour) format to the standard time format used by the Time class. The
class should have the fol lowing member variables:

milHours:

milSeconds:

Contains the hour in 24-hour format. For example, 1:00 pm would
be stored as 1300 hours, and 4:30 pm would be stored as 1630
hou rs.

Contains the seconds in standard format.

The class should have the following member functions:

Construct or: The constructor should accept arguments for the hour and seconds,
in military format. The time should then be converted w standard
time and stored in the hours, min, and sec va riables of the Time
class.

setTime:

getHour:

getStandHr:

Accepts arguments to be stored in the milHour and milSeconds
variables. The time should then be converted to standard time and
stored in the hours, min, and sec variables of the Time class .

Returns the hour in military format.

Returns the hour in standard forma r,

Demonstrate the class in a program that asks the user to enrer rhe time in military for
mat. The program should then display the rime in both military and standard format,

Input Validation: The MilTime class should not accept hours greater than 2359. or
less than O. It should not accept seconds greater than 59 or less than O.

961

962 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

5. Time Clock

Design a class named TimeClock. The class should be derived from the Mil Time class
you designed in Programming Challenge 4. The class should allow the programmer to
pass two times to it: starting time and ending rime. The class should have a member
function that returns the amount of time elapsed between the two times. For example,
if the starting rime is 900 hou rs (9:00 am), and the ending rime is 1300 hou rs (1:00
pm), the elapsed time is 4 hours.

Input 'Validation: The class should not accept hours greater than 2359 or less than O.

6. Es say class

Design an Essay class that is derived from the GradedActivity class presented in
this chapter. The Essay class should determ ine the grade a student receives on an
essay. The student's essay score can be up to 100, and is determined in the follow ing
lUanner:

• Grammar; 30 points
• Spelling: 20 points
• Correct length: 20 points
• Conrent; 30 points

Demonstrate the class in a simple program.

7. PersonData and CustomerData classes

Design a class named PersonData with the following member variables:

• lastName
• firstName
• address
• city
• state
• zip
• phone

Write the appropriate accessor and mutator functions for these member variables.

Next, design a class named CustomerData, which is derived from the PersonData

class. The Customer Data class should have the following member variables:

• customerNumber
• mailingList

The customerNumber variable w ill be used to hold a unique integer for each cus
tomer. The mailingList variable should be a bool. It will be set to true if the cus
tomer wishes to be on a mailing list, or false if the customer does nor wish to be on
a mailing list. Write appropriare accessor and mutator functions fo r these member
var iables. Demonstrate an object of the CustomerData class in a simple program.

S. Pre f e rre dCust omer Class

A reta il store has a preferred customer plan where customers may earn discounts on
all their purchases. The amount of a customer's discount is determined by the amount
of the customer's cumulative purchases in the store.

• When a preferred customer spends $500, he or she gets a 5% discount on all
future purchases.

Review Questions and Exercises

• When a preferred customer spends $1,000, he or she gets a 6% discount on an
future purchases.

• When a preferred customer spends $1,500, he or she gets a 7% discoum on all
future purchases.

• When a preferred customer spends $2,000 or more, he or she gets a 10% dis-
coum on all future purchases.

Design a class named PreferredCustomer, which is derived from the CustomerData
class you created in Programming Challenge 7. The PreferredCustomer class should
have the following member variables:

• purchasesAmount (a double)
• discountLevel (a double)

The purchasesAmount variable holds the total of a customer's purchases to date. The
discountLevel variable should be set to the correct discount percentage, according to
the store's preferred customer plan. Write appropriate member functions for this class
and demonstrate it in a simple program.

Input Validation: Do not accept negative values for any sales figures.

9. File Filter

A file fi lter reads an input file, transforms it in some way, and writes the results to an out
put file . Write an abstract file filter class that defines a pure virtual function for transform
ing a character. Create one derived class of your file fi lter class that performs encryption,
another rhat transforms a file to all uppercase, and another thar creates an unchanged
copy of the origina l file. The class shou ld have the following member function:

void doFilter(ifstream &in, of stream &out)

This function should be called to perform the actual filtering. The member funct ion
for transforming a single cha racter should have the prototype:

char transform(char ch)

The encryption class should have a constructor that takes an integer as an argument
and uses it as the encryption key.

10. File Double-Spacer

Create a derived class of the abstract fi lter class of Programming Challenge 9 that
double-spaces a file; that is, it inserts a blank line between any two lines of the file.

11. Course Grades

In a course, a teacher gives the following tests and assignments:

• A lab activity that is observed by the teacher and assigned a numeric score.
• A pass/fail exam that has 10 questions, The minimum passing score is 70.
• An es;s;ay that is assigned a numeric score.
• A final exam that has 50 questions.

Write a class named CourseGrades. The class should have a member named grades

that is an array of GradedActivity pointers. The grades array should have four ele
ments, one for each of the assignments previously described. The class should have
the following member functions:

963

964 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

setLab: This function should accept the address of a GradedActivity

object as its argument. This object should already hold the
student's score for the lab activity. Element 0 of the grades array
should reference this object.

setPassFailExam: This function should accept the address of a PassFailExam
object as its argument. This object should already hold the
student's score for the pass/fail exam. Element 1 of the grades
array should refe rence this object.

setEssay: This fUllction should accept the add ress of an Essay object as irs
argument. (See Programming Challenge 6 for the Essay class. If
you have not completed Programming Cha llenge 6, lise a
GradedActivity object instead.) This object should already
ho ld the student's score for the essay. Element 2 of the grades
array should reference th is object.

setPassFailExam; This function should accept the address of a FinalExam object
as its argument. This object should already hold the student's
score for the final exam. Element 3 of the grades array should
reference this object.

print: This fu nction should display the numeric scores and grades for
each clement in the grades array.

Demonstrate the class in a program.

12. Ship, Cruis eSbip, and cargoSbip Classes

Design a Ship class tha t has the following members:

• A member variab le for the na me of the ship (a string)
• A member variable for the year that the ship was built (3 string)
• A constructor and appropriate accessors and I!lutators
• A virtual print function that d isplays the ship's name and the year it was bu ilt.

Design a Cruiseship class that is derived from the Ship class. The CruiseShip class
should have the following members:

• A member variable for the max imum number of passengers (an int)
• A construcror and appropriate accessors and mutato rs
• A print fu nction tha t overrides the print funct.ion in the base class . T he

cruiseShip class's print func tjon should display only the ship's name and the
max imum number of passengers.

Design a CargoShip class that is derived from the Ship class. T he CargoShip class
should have the following mem bers:

• A member variable for the cargo capacity in tonnage (a n int).
• A constructor and approp riate accessors and mutators.
• A print function that overrides the print funct ion in the base class. The

CargoShip class's pr int function should display only the ship' s name and the
ship's cargo capacity . .

Demonstrate the classes in a program that has an array of Ship po inters . T he array
elements should be initialized with the addresses of dynamically alloca ted Ship,

Review Questions and Exercises

CruiseShip, and CargoShip objects. (See Program 15~ 13, Ijnes 17 through 22, for an
example of how to do this.) The program should then step through the array, calling
each object's print function.

1.3c. Pure Abs\ract Bast C lass Project

Define a pure abstract base class ca lled BasicShape. The Baaicshape class should
have the following members:

Private Member Variable:

area, a double used to hold the shape's area.

Public Member Functions:

getArea. This function should rerum the value in the member variable area.

calcArea. This function should be a pure virrua l function.

Next, define a class named Circle. It should be derived from the Basicshape class.
It should have the fo llowing members:

Private Member Variables:

centerX, a long integer used to hold the x coordinate of the circle's center.

centerY, a long integer used to hold the y coordinate of the circle's center.

radius, a double used to hold the circle's radius.

Public Member Functions:

constructor-accepts values for centerX, centerY, and radius. Should call the
overridden calcArea function described below.

getCenterx-returns the value in centerX.

getCenterY-rerurns the value in centerY.

calcArea---calculates the area ofthe circle (area = 3.14159 radius radius)
and stores the resu lt in the inherited member area.

Next, define a class named Rectangle. Ir should be derived from the BasicShape
class. I[should have [he following members:

Private Member Variab les:

width, a long integer used to hold the width of the rectangle.

length, a long integer used to hold the length of the rectangle.

Public Member Functions:

constructor-accepts va lues for width and length. Should call the overridden
calCArea function described below.

96S

966 Chapter 15 lnheritance, Polymorphism, and Virtual Functions

get'Width-returns the value in width.

getLength- returns the value in length.

calCArea-calculates the area of the rectangle (area = length " width) and stores
the rcsulr in the inherited member area.

After you have created these classes, create a driver program that defines a Circle
object and a Rectangle object. Demonstrate that each object properly calculates and
reports its area.

Group Project

14. Bank Accounts

This program should be designed and written by a team of studenrs. Here are some
suggestions:

• One o r more students may work on a single class.
• The requirements of the program should be analyzed so each student is given

about the same work load.

• The parameters and rerurn types of each function and class member function
should be decided in advance.

• The program will be best implemented as a multi-file program.

Design a generic class to hold the follow ing information about a bank accou nt:

Balance

Number of deposits rhis month

Number of withdrawals

Annual interest rate

Monthly service charges

The class should have the following member functions :

constructor: Accepts arguments for the balance and annual intereST rate.

deposit: A virtual function that accepts an argument for the amount of the
deposit. The function should add the argument to the account bal
ance. It should also increment the variable hold ing the number of
deposiTS.

withdraw: A virtual function that accepts an argument for the amount of the
withdrawal. The functi on should subtract the argument from the bal
a nce . It should also increment the variable holding the number of
withdrawals.

calcln t: A virtual function that updates rhe balance by calculating the
monthly interest earned by the account, and adding this imerest to
the balance. This is performed by the following formulas:

Month ly Interest Rare = (Annual Interest Rate J 12)
Monthly Inreresr = Babnce ... Monthly Interest Rate
Ba lance = Balance + Monthly Interest

o

Review Questions and Exercises

monthlyproc: A virtual function that subtracts the monthly service charges from
the balance, calls the calclnt function, and then sets the variables
that hold the number of withdrawals, number of deposits, and
monthly service charges to zero.

Next. design a savings account class, derived from the generic account class. The sav
ings account class shou ld have the followlng add itional member:

status (to represent an active or inactive account)

If the balance of a savings account falls below $25, it becomes inactive. (The status
member could be a flag variable.) No more withdrawa ls may be made until the bal
ance is raised above $25, at which time rhe account becomes active again. The savings
account class should have the following member functions:

withdraw:

deposit:

A function that checks [0 see if the account is inactive before a with
drawal is made. (No withdrawal wi ll be allowed if the account is not
active.) A withdrawal is then made by calling the base class version
of the function.

A function that checks to see if the account is inactive before a
deposit is made. If the account is inactive and the deposit brings the
balance above $25, the account becomes active again. The deposit is
then made by calling the base class version of the function.

monthlyProc! Before the base class function is called, this function checks the num
ber of withdrawals. If the number of withdrawals for the month is
more than 4, a service charge of $1 for each withdrawal above 4 is
added to the base class variable that holds the monthly service charges.
(Don't forget to check the account balance after the service charge is
taken. If the balallce falls below $25, the account becomes inactive.)

Next, design a checking account class, also derived from the generic account class. It
should have the following member functions:

wi thdraw: Before the base class function is called, this function will determine if a
withdrawal (a check written) will cause the balance to go below $0. U
the balance goes below $0, a service charge of $15 will be taken from
the account. (The withdrawa l will not be made.) If there isn't enough
in the account [0 pay the service charge, the balance will become nega
tive and the customer will owe the negative amOunt to the bank.

monthlyProc: Before the base class function is ca lled, this funcrion adds the monthly
fee of $5 pillS $0.10 per withdrawal (check written) to the base class
variable thar holds [he monthly service charges.

Write a complete program that demonstrates these classes by asking the user to enter
the amounts of deposits and withdrawals for a savings account and checking account.
The program should display statistics for the month, including beginning balance,
total amount of deposits, total amount of withdrawals, service charges, and ending
ba lance.

NOTE: You ma y need to add more member va riables and functions to the classes than
those listed above.

967

968 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Serendipity Booksellers Software Development ProJect
Part 15: A Prob'em-So'ving Exercbe

1. Break the BookData Class inca Two Classes

Currently the BookData dass contains an of the data about n book in the store\s
inventory. Now you will break the class into two classes: one that is a base class con
taining on genera l data about a book, and another that is a derived class contain ing
data abour a book in inventory.

First, simplify the BookData class so it contains only the general data abour a book.
Specifica ll y, modify the BookOatB class so it contains: only the fo llowing member vari
ables and member functions:

Member Variables
bookTitle
isbn
author
publisher

Member Functions
setTitle
setISBN
setAuthor
setPub

Next you will create a new class named InventoryBook. This class will be derived
from the BookData class, and will hold invemory-relared data about a book. Specifi
cally, this class w ill contain the following member variables and member functions,
'Which wer e reITlovcd ffOITl the o riginal aookData class:

Member Variables
dateAdded
qtyOnHand
wholesale
retail

Member FmJctions
setDateAdded
setQty
setWholesale
setRetail
iSE;mpty
removeBook

2. Create the SoldBook Class

Create a class named SoldBook, w hich is derived from the InventoryBook class. Its
purpose is to represent a book tha t has been sold to a customer, and perform the nec
essary calcula tions for the sa le of a book. It should have the following members:

Member Variables;

taxRate A static private member, used to hold the sa les tax rate.

qtySo l d The quantity of this particular book that is being purchased.

tax

subtotal

total

Review Questions and Exercises

The sales tax on the purchase of this particular book, calculated as
qtySold times retail times taxRate. (retail is inherited from
InventoryBook.)

The subtotal of the sale of this particular tirie. The subtotal is calcu
lated as retail times qtySold plus tax.

A private static member, used to hold the tota l of an entire sale.

You should determine the accessors, mutators, and other member functions needed in
this class.

The cashier function should ask the user how many titles the customer is purchasing.
It should then dynamically allocate an array of SoldBook objects large enough for
that many tides. The function will use the array of SoldBook objects to compute the
necessary information for a customer's sale. The function will then display the simu
lated sa les slip on the screen.

